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1
Preliminaries

F of mathematical optimization relies on the urge
to utilize available resources to their optimum. This leads to

mathematical programs where an objective function is optimized
over a set of constraints. The set of constraints can represent
different structures, for example, a polyhedron, a box or a cone.
Mathematical programs with cone constraints are called cone
programs. A sub area of mathematical optimization is the one
where the number of variables is inite while the number of
constraints is in inite, known as semi-in inite programming. In this
chapter we will start with a general introduction into the thesis. In
the second section some basic de initions are given which are used
throughout the thesis. The third and the fourth section provide a
brief review of results on cone programming and semi-in inite
programming, respectively. In section ive we will brie ly discuss
cone programming relaxations. In the last section we shall give an
overview over results presented in the thesis.

1



2 1.1. INTRODUCTION

1.1 Introduction

In mathematical optimization an objective function is required to be optimized
over a set of side conditions called constraints. More precisely, mathematical
optimization, refers to the following problem:

max f(x) s.t. gj(x) ≤ 0, j ∈ J, x ∈ S

where S ⊆ Rn, J an index set (possibly in inite) and f : Rn → R, gj : Rn →
R. The function f is called objective function while the functions gj represent
constraints. A point x ∈ S is called feasible, if it satis ies all constraints gj(x) ≤ 0,
j ∈ J . The optimization problem is called feasible if there exists at least one
point x ∈ S satisfying all constraints.
If a point x ∈ S satis ies all constraints and the value of the objective function,

f(x), is optimal, then this point, x, is called a solution. An optimization problem
can have more than one solution, or no solution at all.
Mathematical programming emerged as an independent area of mathematics

in the second half of the previous century. Its root can be traced back to the
work of ancient Chinese mathematicians, to the work of Euler, Leibniz,
Lagrange and Newton (for a history of optimization see [77]). Mathematical
optimization is a rich ield of mathematics with numerous applications. In
order to give a lavour of applicability of mathematical optimization to real
world problems, we quote: `` In many of their approaches to understand nature,
physicists, chemists, biologists, and others assume that the systems they try to
comprehend tend to reach a state that is characterized by the optimality of
some function'' [77] and ``To make decisions optimally is a basic human desire.
Whenever the situation and the objectives can be described quantitatively, this
desire can be satis ied, to some extent, by using mathematical tools, speci ically
those provided by optimization theory and algorithms'' [11].
Mathematical optimization is a vast area of mathematics. It can be classi ied

in various ways. A fundamental classi ication is linear optimization and
nonlinear optimization. Nonlinear optimization contains both ``hard'' and
``easy'' problems. Nonlinear optimization can be further classi ied as convex
optimization and non-convex optimization. A sub-area of mathematical
optimization is the one where the number of variables are inite while the
number of constraints are in inite, known as semi-in inite programming.
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In mathematical optimization the constraint set may represent a geometrical
structure. If the variables are restricted to take values from a so-called cone,
then we have a cone program. Cone programming not only contains convex
programming as a special case, but some nonconvex optimization problems can
also be reformulated as a cone program.
Cone programs over the copositive cone or the completely positive cone are

referred to as copositive programming. In the last decade copositive
programming has caught much attention due to the fact that many hard
optimization problems can be exactly reformulated as a copositive program. In
this thesis we shall deal with copositive programming and problems related to
copositive programming. As we shall see, feasibility in copositive programming
amounts to solving a so-called standard quadratic optimization problem.
Optimality conditions and solution methods for copositive programming are
also discussed from a viewpoint of linear semi-in inite programming. We will
also look at the sharpness of copositive programming relaxations of
quadratically constrained quadratic programs.

1.2 Basic De initions

In this section we will give the basic notations and de initions used throughout
the thesis. Following the usual convention the set of all real numbers will be
denoted byRwhileR+ denotes the set of all nonnegative real numbers. Similarly
for given positive integersm,n,Rm andRm×n denote the set of all real vectors of
sizem and the set of allm× n real matrices, respectively. Moreover, the vectors
will be denoted by bold small letters while the elements of the vectors will be
denoted by small letters with subscripts. For example, the ith element of v ∈ Rm

will be written as vi. For the complete list of notation the interested reader is
referred to the List of Notations given at page 121.
This thesis is mainly concerned with cone programming or speci ically

copositive programming. First we will de ine what is meant by a convex set and
a convex cone,

De inition 1.1 (Convex Set). A set S ⊆ Rm is called convex if for each v,u ∈ S
and 0 ≤ λ ≤ 1we have λv+ (1− λ)u ∈ S.
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De inition 1.2 (Convex Hull). Let S ⊂ Rm be an arbitrary set. The set,

conv (S) :=
{
v : v =

n∑
i=1

λivi, vi ∈ S;λi ≥ 0 for i = 1, · · · , n,
n∑

i=1

λi = 1, n ≥ 1

}

is called the convex hull of S.

De inition 1.3 (Convex Cone). A set K ⊆ Rm×n which is closed under
nonnegative multiplication and addition, i.e., U, V ∈ K ⇒ λ (U + V ) ∈ K for
all λ ≥ 0, is called a convex cone. A cone is pointed ifK ∩−K = {0}. The dual of
a coneK is de ined as:

K∗ =
{
U ∈ Rm×n : ⟨U, V ⟩ ≥ 0, ∀ V ∈ K

}
where ⟨., .⟩ stands for the standard inner product, i.e.,

⟨U, V ⟩ = tr(UTV ) =
∑
i,j

uijvij for U, V ∈ Rm×n,

with uij denoting the ijth element of the matrix U .

In the above de inition tr denotes the trace of the matrix and UT denotes the
transpose of U .
There are three special cases of convex cones which are important with

respect to the material presented in this thesis. These cones are formed by
certain subsets of symmetric matrices. We will de ine these matrices and the
associated cones. In the de initions below and throughout the thesis Sm

denotes the cone of all symmetric m × m matrices.

De inition1.4 (Positive Semide initeMatrix). AmatrixQ ∈ Sm is called positive
semide inite ifvTQv ≥ 0 for allv ∈ Rm. The set of allm×mpositive semide inite
matrices de ines a cone called the positive semide inite cone. We will denote this
cone by S+

m.
Similarly, Q ∈ Sm is called positive de inite if Q ∈ S+

m and vTQv = 0 holds if
and only if v = o, where o ∈ Rm is the zero vector. The set of all positive de inite
matrices is denoted by S++

m .

De inition 1.5 (Copositive Matrix). A matrix Q ∈ Sm is called copositive if
vTQv ≥ 0 for all v ∈ Rm

+ . The set of all m × m copositive matrices de ines a
cone called the copositive cone. We will denote this cone by Cm.



CHAPTER 1. PRELIMINARIES 5

De inition 1.6 (Completely Positive Matrix). A matrix Q ∈ Sm is called
completely positive if there exist a matrix B ∈ Rm×n

+ , for some n ∈ N, such that
Q = BBT . The set of all m × m completely positive matrices de ines a cone
called the completely positive cone. We will denote this cone by C∗

m.

1.3 Cone Programming

In this section we will brie ly discuss some results on cone programming. Cone
programming is an important class of mathematical programming. Cone
programming refers to the following pair of primal dual programs,

(ConeP ) max
x∈Rn

cTx s.t. B −
n∑

i=1

xiAi ∈ K

where Ai, B ∈ Sm, c ∈ Rn and K is a given cone of symmetricm ×mmatrices.
The dual of the above program can be written as follows:

(ConeD) min ⟨B, Y ⟩ s.t. ⟨Ai, Y ⟩ = ci, ∀ i = 1, ..., n, Y ∈ K∗

In mathematical programming, duality theory plays a crucial role in
formulating optimality conditions and devising solution algorithms. Duality
theory can be further classi ied into two categories: weak duality and strong
duality. In weak duality we investigate, if the optimal value of the primal
problem is upper bounded by the value of the dual problem. Strong duality
investigates the conditions under which equality holds for optimal values of the
primal problem and the dual problem. (ConeP ) and (ConeD) satisfy weak
duality.

Lemma 1.7 (Weak Duality). Let x and Y be feasible solutions for (ConeP ) and
(ConeD) respectively, then cTx ≤ ⟨Y,B⟩.

Proof. We have

cTx =

n∑
i=1

cixi =

n∑
i=1

xi⟨Ai, Y ⟩ =
n∑

i=1

⟨xiAi, Y ⟩ =

⟨
n∑

i=1

xiAi, Y

⟩

= ⟨B, Y ⟩ −

⟨
B −

n∑
i=1

xiAi, Y

⟩
≤ ⟨B, Y ⟩
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In the case of linear programming, i.e. the case, when K = Nm, where Nm

denotes the cone of allm×m symmetric nonnegative matrices, then, whenever
(ConeP ) or (ConeD) are feasible, we have equality in the optimal values, i.e., we
have a zero duality gap. Moreover, if both (ConeP ) and (ConeD) are feasible
then both optimal values are attained. Strong duality does not hold for cone
programming, in general. In the example below and throughout the thesis for a
mathematical program (P ), val(P ) and F(P ) will denote the value and the set
of feasible points for the program (P ).

Example 1.8 (Strong Duality May Fail). Consider,

B =

0 0 0
0 0 0
0 0 1

 , A1 =

1 0 0
0 0 0
0 0 0

 , A2 =

0 1 0
1 0 0
0 0 2

 , c =
(
0
2

)
,

then (ConeP ) and (ConeD) takes the following form,

(ConeP ) max
x∈R2

2x2 s.t.

−x1 −x2 0
−x2 0 0
0 0 1− 2x2

 ∈ K

(ConeD) min y33 s.t. y11 = 0, y12 + y33 = 1, Y :=

y11 y12 y13
y12 y22 y23
y13 y23 y33

 ∈ K∗

It is clear that for the caseK = K∗ = N3 we have,

val(ConeP ) = val(ConeD) = 0.

It is not dif icult to verify that for the caseK = K∗ = S+
3 we have val(ConeP ) = 0

and val(ConeD) = 1 even though both problems are feasible.

For the caseK = C3 we have (cf. Lemma 2.10),

F(ConeP ) = {x ∈ R3 : x1 ≤ 0, x2 ≤ 0, x1(2x2 − 1) ≥ 0, 1− 2x2 ≥ 0}

From this we get val(ConeP ) = 0. Now takeK∗ = C∗
3 and note that the necessary

and suf icient condition for Y ∈ C∗
3 is that Y ∈ S+

3 ∩ Nm (see (2.8) on page 31).
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Then we get val(ConeD) = 1 attained by

C∗
3 ∋ Y =

0 0 0
0 1 0
0 0 1

 =

0
1
0

(0 1 0
)
+

0
0
1

(0 0 1
)
.

For strong duality, in conic programming we need extra conditions on the
constraints. These conditions are normally called constraint quali ications. The
most well-known constraint quali ication is the so-called Slater condition. In
the case of (ConeP ) the Slater condition reads:
De inition 1.9 (Primal Slater Condition). We say that (ConeP ) satis ies the
Slater condition if there exists x ∈ Rn such thatB −

∑n
i=1 xiAi ∈ int(K).

Here int(K) denotes the interior of the cone K. The Slater condition for the
dual (ConeD) can be de ined in a similar manner. Note that in the above
example both the primal and the dual do not satisfy the Slater condition. By
assuming that the Slater conditions holds, one can derive a strong duality result
for cone programming.
Theorem1.10 (StrongDuality). For the primal dual cone programs (ConeP )and
(ConeD) the following holds.

i. If the primal problem (ConeP ) satis ies the Slater condition and F(ConeD)
is nonempty, then the dual problem (ConeD) attains its optimal values and
val(ConeP ) = val(ConeD).

ii. If the dual problem (ConeD) satis ies the Slater condition and F(ConeP ) is
nonempty then the primal problem (ConeP ) attains its optimal values and
val(ConeP ) = val(ConeD).

Proof. See e.g. [11].

1.3.1 Linear Programming

As mentioned earlier for the case K = Nm, (ConeP ) and (ConeD) becomes a
linear program (LP). Linear programming is an intensively studied sub-area of
mathematical optimization. There exists a plethora of real world problems
which can be formulated as a linear programming problem (see e.g. [61,
Chapter 2], [68]).
Duality plays an important role in developing algorithms for solving

mathematical optimization problems. Since linear programming has nice
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duality properties, it is no surprise that there exist many state of the art
algorithms for solving linear programs.
The most well known and widely used method is the simplex method

originally developed by Dantzig. Although the simplex method is adopted
widely for solving linear programs, it is well known that the method can take
exponential time in a worst case scenario [104]. This drawback led to the
search for new algorithms for linear programming with polynomial time
complexity. The real breakthrough in this area came when Khachiyan [101]
published his polynomial time ellipsoidal algorithm. In spite of the promising
polynomial time running time of the ellipsoidal method, it is not suitable for
most applications due to its slow convergence. Another breakthrough came
with the work of Karmarkar [99] on interior point methods, which were proved
to be polynomial with faster convergence guarantees. For details on interior
point methods for solving linear optimization problems the interested reader is
referred to [132].

1.3.2 Semide inite Programming

The cone program for the special case when K = S+
m is referred to as

semide inite program(SDP). Semide inite programming can be seen as a natural
generalization of linear programming where linear inequalities are replaced by
semide initness conditions.
In contrast to linear programming even if all data in the SDP are rational we

can end up in an irrational solution.

Example 1.11. Consider,

(ConeP ) max
x∈R

x s.t.

(
2 −x
−x 1

)
∈ K

then forK = S+
2 it can be easily veri ied that the solution isx = val(ConeP ) =

√
2

while forK = N2 we have x = 0.

Since a rational SDP (when all input data in SDP are rational) can have an
irrational solution, we cannot hope for an exact polynomial solution method.
However, there exist algorithms which can approximate the solution of SDP to
any ixed precision in polynomial time. The interior point methods of
Karmarkar are generalized to SDP in [6, 5]. The ellipsoidal method of
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Khachiyan is also generalized to SDP, but as in the case of linear programming,
the ellipsoidal method suffers from slow convergence.

SDP has become a very attractive area of research among the optimization
community due to its large applications. The most appealing and useful
application of SDP is the SDP relaxation, which has numerous applications in
combinatorial optimization. Although strong duality does not hold in general
for SDP, in most SDP relaxations of combinatorial optimization problems strong
duality is satis ied (see e.g. [33, 127, 128]).

The most popular SDP relaxation is for the Max-Cut problem. Using a SDP
relaxation along with randomization, Goemans and Williamson [74] has
obtained a 0.878- approximation algorithm for the Max-Cut problem. This was a
major breakthrough for SDP. It has opened a way for the application of SDP in
combinatorial optimization problems. This problem is further discussed
in [130]. The SDP relaxation of the stability number of a graph resulted in the
so-called Lovasz theta number. The theta number has not only provided a
bound on the stability number of the graph but also provided a polynomial time
algorithm for inding the stability number in a so-called perfect graph, for
details see [110, 120]. The well known spectral bundle methods for the
eigenvalue optimization problem are based on the concept of SDP, for details
see [152]. SDP has been proved very useful for approximating nonlinear
problems. Speci ically quadratically constrained quadratic programs(QCQP)
are approximated by the use of SDP relaxations (for details see [4, 9, 148]).
There are many other complex problems for which SDP has provided promising
results, this list of problems includes the satis iability problem [8, 83],
maximum clique and graph colouring [26, 57, 56], non-convex quadratic
programs [65], graph partitioning [69, 122, 153, 155], nonlinear 0-1
programming [106, 107], the knapsack problem [86], the travelling salesman
problem [49], the quadratic assignment problem [122, 155], subgraph
matching [136], statistics [152, Chapter 16 and 17], control theory [148],
structural design [152, Chapter 15] and many other areas of science and
engineering. In [152], a lot of material on theory, methods and applications of
SDP is presented.
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1.3.3 Copositive Programming

The cones of positive semide initematrices and of nonnegativematrices have the
nice property that both are self dual. In this subsection we will brie ly discuss
cone programs over the cone of copositive matrices which is not self dual. Here
we rewrite the cone program for the special case when K = Cm, since it will be
widely discussed throughout the thesis.

(COPP ) max
x∈Rn

cTx s.t. B −
n∑

i=1

xiAi ∈ Cm

(COPD) min
Y ∈Sm

⟨Y,B⟩ s.t. ⟨Y,Ai⟩ = ci ∀ i = 1, . . . , n, Y ∈ C∗
m,

with c ∈ Rn and Ai, B ∈ Sm. We assume throughout that the matrices Ai, i =
1, . . . , n are linearly independent.

During the last years, copositive programming has attracted much attention
due to the fact that many dif icult (NP-hard) quadratic and integer programs
can be reformulated equivalently as copositive programs (COP) (see
e.g. [28, 39, 47, 124, 123]). This reformulation clearly does not make these
intractable problems tractable, but this reformulation can lead to new
approximation guarantees for NP-hard problems as is the case for the standard
quadratic optimization problem (see [28] and Remark 5.15).
From Example 1.8, it is clear that strong duality does not hold for copositive

programming in general. In Chapter 5, we will brie ly discuss duality in
copositive programming from the viewpoint of linear semi-in inite
programming. In [30], examples of COP are given where either attainability of a
solution fails or there exists a nonzero duality gap.
It is well known that copositive programming is NP-hard. A main problem

lies in checking the membership of a matrix in the cone of copositive matrices.
Note, that it has been established that checking if a matrix is copositive is
co-NP-hard [117]. Since there cannot exists a polynomial algorithm for solving
copositive programming (assuming P ̸= NP), one has to rely on approximation
methods. There exist roughly three method/algorithms for
solving/approximating copositive programs namely the ϵ-approximation
algorithm [38] and its variations [143, 158, 157], approximation hierarchy
based methods [28, 47, 120, 154] and feasible descent methods [19]. The
ϵ-approximation algorithm approximates (COPP ) while approximation
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hierarchy based methods exist for both (COPP ) [28, 47, 120] and
(COPD) [154]. The feasible descent method in [19] approximates (COPD).
The ϵ- approximation algorithm of Bundfuss and Dür is reanalysed as a special
case of a discretization method for semi-in inite programming (see Section 1.4)
in Chapter 5. For surveys on results and methods for copositive programming
the interested reader is referred to [18, 30, 58].

1.4 Semi-in inite Programming

In semi-in inite programming, as mentioned before, the objective function is
optimized under an in inite set of constraints. In this section we shall restrict
ourself to linear semi-in inite programming problems (LSIP). One can write
LSIP in the following form,

(SIPP ) max
x∈Rn

cTx s.t. b(z)− a(z)Tx ≥ 0 ∀ z ∈ Z,

with an in inite compact index setZ ⊆ Rm and continuous functions a : Z → Rn

and b : Z → R. It is not dif icult to show that F(SIPP ) is closed.
One can associate different dual problems with (SIPP ). Here we shall use the

so-called Haar dual, which reads as follows,

(SIPD) min
yz

∑
z∈Z

yzb(z) s.t.
∑
z∈Z

yza(z) = c, yz ≥ 0,

where only a inite number of dual variables yz, z ∈ Z (are allowed to) attain
positive values. For the formulation of the Haar dual the interested reader is
referred to [44], while the properties of the Haar dual are discussed in [71].
Note that (SIPD) is feasible if and only if c belongs to the cone generated by

vectors a(z), z ∈ Z , that is

(SIPD) is feasible if and only if c ∈ cone{a(z) : z ∈ Z} (1.1)

LSIP has been widely applied in many areas of engineering including, but not
limited to: the pattern recognition problem , themaximum likelihood regression
and robust optimization (see [88, 73, 108, 149]).
The duality theory for LSIP is very well studied. In contrast to linear

programming, again, strong duality does not hold in general for LSIP. In order
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to ensure strong duality, as before, we need Slater conditions for LSIP. The
primal and the dual Slater conditions for LSIP are given below.
De inition 1.12 (Slater Condition(LSIP)). The primal Slater condition holds

if there exists x ∈ Rn with b(z)− a(z)Tx > 0 ∀ z ∈ Z (1.2)

We say that the dual Slater condition holds if

c ∈ int(cone{a(z) : z ∈ Z}) (1.3)

We introduce the upper level sets for LSIP,

Fα(SIPP ) = {x ∈ F(SIPP ) : cTx ≥ α}, α ∈ R.

Let S(SIPP ) denote the set of maximizers of (SIPP ). Recall that, in general, for
LSIP strong duality need not hold and solutions of (SIPP ) and/or (SIPD) need
not exist. However, the following is true for linear SIP (see Theorem 1.10 for a
corresponding result in cone programming).
Theorem 1.13. We have:

i. If either (1.2) or (1.3) holds, then val(SIPP ) = val(SIPD).

ii. Let F(SIPP ) be non-empty. Then

(1.3) holds ⇔ ∀α ∈ R: Fα(SIPP ) is compact ⇔ ∅ ̸= S(SIPP )is compact.

Thus, if one of these equivalent conditions holds, then a solution of (SIPP )
exists.

A result as in ii. also holds for the dual problem.

Proof. See, e.g., [88, Theorems 6.9, 6.11] and [108, Theorem 4] for the second
equivalence in ii..

In the theorem below we will give optimality conditions for LSIP. This requires
the so-called KKT conditions.
De inition 1.14 (Active Index Set). Let x ∈ F(SIPP ). Then the active index set
for x denoted by Z(x) is given by,

Z(x) = {z ∈ Z : a(z)Tx = b(z)} (1.4)

The set Z(x) is a closed and compact subset of Z .
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De inition1.15 (KKTCondition). A feasible point x ∈ F(SIPP ) is said to satisfy
the KKT condition if there exist multipliers µ1, ..., µk ≥ 0 and indices zj ∈ Z(x),
j = 1, · · · , k such that,

∇xcTx−
k∑

j=1

µj∇x(a(zj)Tx− b(zj))) = o

or equivalently,
k∑

j=1

µja(zj) = c (1.5)

The optimality conditions for LSIP are given below,

Theorem 1.16. If a point x ∈ F(SIPD) satis ies the KKT condition (1.5) then x
is a (global) maximizer of (SIPP ). On the other hand under the conditions (1.2) a
maximizer x of (SIPP )must satisfy the KKT conditions.

Proof. See [108, Theorem 3] and [88, Theorem 2(b)].

Although LSIP is a convex program, the existence of a polynomial time
algorithm is not possible for LSIP. The main dif iculty lies in checking the
constraint a(z)Tx ≤ b(z) for all z ∈ Z . The numerical methods available can be
classi ied into ive main categories: discretization methods, local reduction
method, exchange methods, simplex-like methods and descent methods.

Discretization methods are based on solving a sequence of inite programs.
The sequence of inite programs are solved according to some pre-de ined grid
generation scheme or some cutting plane scheme. The method boost for their
global convergence guarantees. Beside the global convergence guarantee,
discretization methods are known to be very slow in practice. Interestingly the
ϵ- approximation algorithm [38] for solving copositive programs can be seen as
a special case of a discretization method. We will discuss this relation in detail
in Chapter 5.
In the local reduction method the original problem is replaced by a locally

equivalent problem with initely many inequality constraints. The problem can
also be replaced by a system of nonlinear equations with initely many
unknowns. This system can be solved by Newton's method and hence these
methods may have good convergence results. Reduction based SQP-methods
are one example of these kind of methods.
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The exchange methods can be seen as a compromise between discretization
methods and reduction methods. Hence they are more ef icient than
discretization methods. For details see [87, 88, 129].
The simplex-likemethods for solving LSIP problems, as the name suggests, are

modi ications of the simplexmethod for linear programming (for details see [7]).
For more details on theory algorithms and applications of LSIP the interested

reader is referred to [72].

1.5 Cone Programming Relaxations of Quadratic
Problems

In this section a brief introduction into cone programming relaxations for
quadratic programs is presented.
We consider the following quadratic program,

(QCQP ) min
u

cT0 u s.t. uTAju+ 2cTj u+ bj ≤ 0, ∀ j ∈ J u ∈ K

where J := {1, 2, · · · , k}, K ⊆ Rm is a closed convex cone, Aj ∈ Sm, cj ∈ Rm

and bj ∈ R. If Aj /∈ S+
m then (QCQP ) is not convex. A standard way to make

this program convex is to gather all nonlinearities in one constraint. To do so, we
introduce a matrix U , such that U = uuT and consider,

uTAiu =
⟨
Ai,uuT

⟩
= ⟨Ai, U⟩ .

Then (QCQP ) can be equivalently written as,

(QCQP ) min
u,U

cT0 u s.t.
⟨Aj , U⟩+ 2cTj u+ bj ≤ 0, ∀ j ∈ J,

U = uuT , u ∈ K

The cone programming relaxation, relaxes the constraint U = uuT into cone
constraints. To do so, we de ine the cone of matrices,

K∗ :=

Y ∈ Sm+1 : Y =

r∑
j=1

µj

(
1

uj

)(
1

uj

)T

,uj ∈ K,µj ≥ 0, r ∈ N


Note that U = uuT can be equivalently written as

(
1 uT
u U

)
= ( 1u ) (

1
u )

T and then
use the relaxation

(
1 uT
u U

)
∈ K∗. Note also that ⟨Aj , U⟩+2cTj u+bj can bewritten
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as
⟨
Qj ,

(
1 uT
u U

)⟩
where Qj :=

(
bj cTj
cj Aj

)
.

For the cases when K = Rm and K = Rm
+ , we obtain the following SDP and

COP relaxations for (QCQP ):

(SDP ) min cT0 u s.t.

⟨
Qj ,

(
1 uT

u U

)⟩
≤ 0, j ∈ J

and
(
1 uT

u U

)
∈ S+

m+1

(COP ) min cT0 u s.t.

⟨
Qj ,

(
1 uT

u U

)⟩
≤ 0, j ∈ J

and
(
1 uT

u U

)
∈ C∗

m+1

A natural question is to ask how sharp these relaxations can be? We analyse
this question in Chapter 4.

1.6 Thesis Outline

The main focus of this thesis is copositive programming and related problems.
In this section an outline of the thesis, with an indication of the main results, is
given.
Chapter 2, is a review of results related to set-semide inite cones. Results on

the copositive cone and its dual, the completely positive cone, are also discussed.
The following are the main (new) results presented in this chapter:
• With the help of an example, it is shown that the well-known Schur
complement for semide inite matrices cannot be extended to the case of
general set-semide inite matrices.

• Some (known) characterizations of copositivity and complete positivity are
provided.

• It is shown that positive diagonally dominant matrices belong to the interior
of the completely positive cone.

The results of Chapter 4 and Chapter 5 have appeared in [2] and [1]
respectively, while Chapter 3 is based on the working paper [3]. The main
results of these chapters are listed below.
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Chapter 3 mainly deals with the standard quadratic programming problem
(StQP). The following are the main (new) results discussed in this chapter:

• A characterization of strict local maximizers is provided. In the literature, the
characterizations for strict local maximizers are given under the condition
that the candidate maximizer satis ies strict complementarity. Our
characterization does not require this condition.

• We show that standard quadratic programming problem involving
nonsingular matrix for which all principle submatrices are nonsingular has at
least one strict local maximizer.

• Results on Lipschitz stability and strong stability of strict local maximizers
with respect to perturbations in the matrix involved are studied. These
results are obtained by applying (known) results of parametric optimization
to the special case of standard quadratic programming.

• It is shown that generically every local maximizer is a strict local maximizer.

• A review of evolutionarily stable strategies is given with an emphasis on the
maximum number of ESS and the relation of ESS with strict local maximizers
of StQP

In Chapter 4, we look at the extension of a result which compares the feasible
set of a nonconvex quadratic program and the feasible set of its semide inite
relaxation. We give an extension of this result for the case of set-semide inite
relaxations.
In Chapter 5, we reformulate a copositive program as a linear semi-in inite

program. The main contributions in this chapter are:

• We study COP from the viewpoint of LSIP and rediscuss optimality and duality
results for COP.

• We interpret different approximation schemes for solving COP as a special
case of the discretization method for LSIP. This interpretation leads to
sharper error bounds for the values and solutions of the approximate
programs in dependence on the mesh size. With the help of examples we
illustrate the structure of the original problem and the approximation
schemes.
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• The question of order of maximizers for COP is also analysed. It is shownwith
the help of examples that for COP maximizers of an arbitrarily high order can
exist.

Publications Underlying This Thesis

• F. A G. J. S , Quadratic maximization on the unit simplex:
structure, stability, genericity and application in biology, Memorandum 2034,
Department of Applied Mathematics, University of Twente, Enschede,
February 2014. (Chapter 3)

• F. A G. S , A note on set-semide inite relaxations of nonconvex
quadratic programs, Journal of Global Optimization, 57 (2013),
pp. 1139--1146. (Chapter 4 and Section 2.1)

• F. A , M. D ̈ , G. S , Copositive programming via semi-in inite
optimization, Journal of Optimization Theory and Applications, 159 (2013),
pp. 322--340. (Chapter 5)
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2
Cones of Matrices

A quadratic form is said to be set-semide inite if it is nonnegative
over some closed cone. It is interesting to study the cone of

matrices associated with such quadratic forms due to their
applicability in many areas including mathematical programming.
In this chapter we will brie ly describe some
results on set-semide inite matrices. We will give particular
emphasis to a special set-semide inite cone namely the copositive
cone. We shall describe the cone properties and characterizations
for checking the membership in these cones and their dual cones.

2.1 Set-Semide inite Cone

The notion of a set-semide inite cone is a generalization of the positive
semide inite cone. We will study set-semide inite relaxations of nonconvex
quadratic programs in Chapter 4. Most of the results presented in this section
have appeared in [2].
We start by de ining the set-semide inite cone,

De inition 2.1. For a given closed cone K ⊆ Rm we de ine the set Cm(K) of
K-semide initem×m-matrices and its dual cone C∗

m(K) ofK-positivem×m-

19
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matrices as:

Cm(K) = {Q ∈ Sm : vTQv ≥ 0 ∀v ∈ K} (2.1)

C∗
m(K) =

U =
∑
j

αjujuT
j : αj ≥ 0, uj ∈ K

 (2.2)

For K = Rm we obtain the (self-dual) cone S+
m of positive semide inite

matrices and for K = Rm
+ the cones of copositive respectively completely

positive matrices.
The study of nonnegativity of a quadratic form over a convex cone can be

traced back to the work of Cottle et al [46]. Sturm and Zhang have studied the
properties of such cones in detail [145] while algebraic properties of these
cones is the topic of Gowda et al [76].
The cones Cm(K) and C∗

m(K) are closed and convex [76]. In the following
lemma we will show that indeed the dual of Cm(K) is given by (2.2).

Lemma 2.2. For any closed setK ⊆ Rm the dual of Cm(K) is C∗
m(K) as given in

De inition 2.1.

Proof. We show that with

C :=

U =
∑
j

αjujuT
j : αj ≥ 0,uj ∈ K

 ,

we have Cm(K) = C∗. By using C∗∗ = C (for closed convex cones C, see e.g. [67,
Lemma 4.4.1]) we ind the identity claimed in the lemma.
"⊂": IfQ ∈ Cm(K) then for all U ∈ C we obviously have,

⟨Q,U⟩ =
∑
j

αj⟨Q,ujuT
j ⟩ ≥ 0

implyingQ ∈ C∗.
"⊃": SupposeQ /∈ Cm(K), i.e.,uTQu < 0 for someu ∈ K . Then forU = uuT ∈ C
it follows ⟨U,Q⟩ < 0, so thatQ /∈ C∗.

In linear algebra, the Schur complement plays an important role for developing
properties and characterizations of matrices. For example in developing
copositivity criteria, Väliaho [146] has made use of the Schur's complement. In
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Lemma 2.3 a generalization of the Schur complement is given. Let in the
following K ⊆ Rm be a closed cone.

Lemma 2.3. It holds(
γ cT
c C

)
∈ Cm+1(R+ ×K) ⇔ γ ≥ 0, C ∈ Cm(K) and

vT (γC − ccT )v ≥ 0 ∀v ∈ K with cTv ≤ 0 .
(2.3)

Proof. The left-hand side means:

(α v)T
(
γ cT
c C

)(
α
v

)
= γα2 + 2αcTv+ vTCv ≥ 0 ∀α ≥ 0, v ∈ K .

``⇒'': The above inequality implies γ ≥ 0, vTCv ≥ 0 for all v ∈ K and in the
case cTv ≥ 0 we are done. In the case cTv ≤ 0, γ = 0 we also obtain cTv = 0.
For the remaining case cTv ≤ 0, γ > 0we write

0 ≤ γα2 + 2αcTv+ vTCv =
1

γ
(γα+ cTv)2 +

1

γ
vT (γC − ccT )v .

Then the assumption vT (γC − ccT )v < 0 for some v ∈ K, cTv ≤ 0 leads to a
contradiction (with a choice γα = −cTv ≥ 0). The direction ``⇐'' is easy.

It is interesting to note that in the special case of positive semide inite matrices,
the above lemma coincides with the well known Schur complement result,(

1 vT

v V

)
∈ S+

m+1 ⇔ V − vvT ∈ S+
m .

Unfortunately such a relation is no more true for C∗
m(K). We only have,

Lemma 2.4. Let V ∈ Sm, v ∈ K be such that V − vvT ∈ C∗
m(K). Then also(

1 vT
v V

)
∈ C∗

m+1(R+ ×K).

Proof. By de inition, the matrix V − vvT ∈ C∗
m(K) can be written in the form

V − vvT =
k∑

j=1

λjujuT
j with λj ≥ 0, uj ∈ K, j = 1, . . . , k .
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So, the decomposition(
1 vT
v V

)
=

(
1

v

)(
1

v

)T

+
k∑

j=1

λj

(
0

uj

)(
0

uj

)T

holds and recalling v ∈ K , this matrix is an element of C∗
m+1(R+ ×K).

The converse of Lemma 2.4 is not true in general (if K ̸= Rm). Consider the
following example,
Example 2.5. Take the copositive case, i.e. ,K = Rm

+ ,m = 2, and choose,

V =

(
2 0
0 2

)
, v = (1, 1)T

Then,

(
1 vT
v V

)
=

1

2

1
0
2

 ·

1
0
2

T

+
1

2

1
2
0

 ·

1
2
0

T

∈ C∗
m+1(R+ × Rm

+ )

but V − vvT =
(

1 −1
−1 1

)
/∈ C∗

m(Rm
+ ), since a necessary condition forQ ∈ C∗

m (as is
clear from (2.2)) is thatQ ∈ Nm.

Now we will consider a generalization of the set-semide inite cone. For a
closed convex cone K and a ixed α ∈ R we consider:

Cm(K,α) :=
{
Q ∈ Sm : vTQv− αvT diag(Q) ≥ 0, ∀v ∈ K

}
(2.4)

where diag(A) ∈ Rm is the vector of the diagonal elements of the matrix
A ∈ Sm, i.e., diag(A) = (a11, . . . , amm)T . In the sequel Diag(u) denotes the
matrix with u ∈ Rm on the main diagonal while all other elements are zero. In
order to construct the dual of Cm(K,α), notice the relation
vT diag(Q) = ⟨Q,Diag(v)⟩, and ind:

vTQv− αvT diag(Q) = ⟨Q, vvT − αDiag(v)⟩

Then by construction the dual of Cm(K,α) will be:

C∗
m(K,α) :=

U =
∑
j

λj(ujuT
j − αDiag(uj)) : λj ≥ 0,uj ∈ K
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It is easily shown, as in the proof of Lemma 2.2, that the cones
Cm(K,α), C∗

m(K,α) are dual to each other.
Note that the set-semide inite cones Cm(K) and C∗

m(K) are the special
instances of Cm(K,α) and C∗

m(K,α) respectively for the case when α = 0.

2.2 Copositive Cone

In this section we will describe a special type of a set-semide inite cone namely
the copositive cone. Recall fromDe inition 1.5 that amatrixQ ∈ Sm is copositive
if and only if vTQv ≥ 0 for all v ∈ Rm

+ . The set of allm×m copositive matrices
forms a closed, convex, full dimensional and non polyhedral cone [37]. In this
section we will con ine ourself to the relation between copositivity and positive
semide initeness, characterizations of copositivity and inally somewords on the
interior and extreme rays of the copositive cone.
The copositive matrices were introduced in 1952 by Motzkin [114]. Since

then these matrices caught attention of researchers. Much work has been done
on extending results on positive semide inite matrices to copositive matrices.
Copositivity has vast applications in different areas of science and engineering.
For an overview of these applications the interested reader is referred to [18]
and the references therein.

2.2.1 Copositivity and Positive Semide initeness

In this subsection we will discuss the relations between copositivity and
positive semide initeness. From the de inition of copositive matrices, it is clear
that every positive semide inite matrix is also copositive, but the converse is
not true in general. For example, the matrix

(
1 1
1 0

)
is clearly copositive but not

positive semide inite. We will describe special cases where the two classes
coincide. We start with the following lemma which says that every matrix with
non-positive off-diagonal entries is copositive if and only if it is positive
semide inite. In the following R++ denote the set of positive real numbers.

Lemma 2.6 ([96]). LetQ ∈ Sm and all off-diagonal entries ofQ are non-positive
(qij ≤ 0 for all i ̸= j) thenQ is copositive if and only if it is positive semide inite.

Proof. IfQ ∈ S+
m, then the lemma is obvious. For the converse suppose thatQ ∈

Cm, then for all v ∈ Rm
+ , vTQv ≥ 0 , also for u = −v,uTQu ≥ 0. Now suppose
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that v ∈ Rm has at least one zero, one positive and one negative component, then
consider v =

(
o u w

)T , where o is a zero vector of dimension t, u ∈ Rs
++ and

−w ∈ Rm−t−s
++ . Partition the matrixQ such that

Q =

Q11 Q12 Q13

QT
12 Q22 Q23

QT
13 QT

23 Q33


where Q11 is the t × tmatrix, Q12 is the t × smatrix, Q13 is the t × (m − s − t)
matrix, Q22 is the s × smatrix, Q23 is the s × (m − s − t)matrix andQ33 is the
(m−s−t)×(m−s−t)matrix. Note thatQ23w ≥ o since bothQ23 is non-positive
andw is negative. Hence we have,

vTQv = uTQ22u︸ ︷︷ ︸
≥0

+2uTQ23w+wTQ33w︸ ︷︷ ︸
≥0

≥ 0

The case when v does not contain a zero entry can be proved similarly. So for all
v ∈ Rm, vTQv ≥ 0. Hence the matrix is positive semide inite.

Semide inite matrices are normally characterized by their eigenvalues since it
is well known that a matrix is positive semide inite if and only if all its
eigenvalues are nonnegative. As one can already see from the above discussion,
copositive matrices may have negative eigenvalues. Now the question arises
how many negative eigenvalues a copositive matrix can have? The following
example provides an answer to the question,
Example 2.7. Let Q := (1 + ε

m)E − εI ∈ Sm for some ε > 0, small, where
E ∈ Sm is the matrix of ones while I ∈ Sm is the identity matrix. Clearly for
0 < ε ≤ m

m−1 ,Q is copositive since it is nonnegative. Moreover,m is an eigenvalue
of Q since Qe = me, where e is the vector of ones. Also −ε is an eigenvalue with
multiplicity m − 1 since Q

(−1
ei

)
= −ε

(−1
ei

)
for i = 1, · · · ,m − 1 and the set{(−1

ei

)
, i = 1, · · · ,m− 1

}
is linearly independent, where ei are the unit vectors of

lengthm− 1.

2.2.2 Characterization of Copositivity

In the literature, there exist several characterizations of copositivity. These
characterizations are based on determinants of submatrices, on a solution of an
associated system of equations or on exploiting the structure of the matrix. In
this subsection we will start with a simple necessary condition for copositivity.
Here and throughout the thesis we shall take U := {1, · · · ,m}.



CHAPTER 2. CONES OF MATRICES 25

Lemma 2.8. LetQ ∈ Cm then qii ≥ 0 for all i ∈ U .

Proof. LetQ ∈ Cm. Then for ei ∈ Rm
+ , i ∈ U we have qii = eTi Qei ≥ 0.

It is clear from Example 2.7 that copositivity cannot be completely characterized
with the help of nonnegative eigenvalues. But a partial characterization can be
obtained by relating the number of positive eigenvalues with the copositivity of
principal submatrices of certain order.

Theorem 2.9. Suppose that a matrix Q ∈ Sm has p positive eigenvalues, p < m.
ThenQ is copositive if and only if all the principal submatrix of order p+1 and less
are copositive.

Proof. See [96, Theorem 4.16].

In the following lemma, we will provide conditions, for copositivity, for
matrices of order two and three and refer the interested reader to [121], for the
case of order four matrices.

Lemma 2.10. The following holds,

i. Q ∈ S2 is copositive if and only if,

q11 ≥ 0, q22 ≥ 0, q12 +
√
q11q22 ≥ 0

ii. Q ∈ S3 is copositive if and only if,

q11 ≥ 0, q22 ≥ 0, q33 ≥ 0

Ā := q12 +
√
q11q22 ≥ 0, B̄ := q13 +

√
q11q33 ≥ 0, C̄ := q23 +

√
q22q33 ≥ 0

√
q11q22q33 + q12

√
q33 + q13

√
q22 + q23

√
q11 +

√
2
√

ĀB̄C̄ ≥ 0

Proof. See [78, 92].

A criterion for determining copositivity based on the structure of the principal
submatrices is developed by Keller and appeared in [45]. This criterion uses
the cofactors of the matrix.

De inition 2.11 (Cofactor and Adjoint of the Matrix). LetQij denote the matrix
obtained fromQ after deleting the ith row ofQ and the jth column ofQ, then the
ijth cofactor ofQ ,denoted by Cij , is given by,

Cij = (−1)i+j det(Qij) .
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The transpose of the matrix of all cofactors, denoted by adj(Q), is called adjoint
ofQ, i.e., (adj(Q))ij = Cji. The adjoint of amatrixQ is related to the determinant
and the inverse of the matrix by the following identity,

Q−1 =
1

det(Q)
adj(Q) or det(Q)I = Q adj(Q) .

First we consider two simple lemmas.
Lemma2.12 ([93]). LetQ ∈ Cm and let v ∈ Rm

+ . Then vTQv = 0 impliesQv ≥ 0.

Proof. LetQ ∈ Cm. Then for λ > 0we have v+ λei ∈ Rm
+ , and thus,

0 ≤ (v+ λei)
TQ(v+ λei) = 2λeTi Qv+ λ2eTi Qei = 2λ(Qv)i + λ2qii

By dividing by λ > 0 and letting λ → 0, we obtain

eTi Qv = (Qv)i ≥ 0.

This holds for every i ∈ U .

Lemma 2.13 ([146]). Let Q ∈ Cm and det(Q) ̸= 0, then the inverse of Q cannot
contain a non-positive column.

Proof. Let B = Q−1 and let some column say bi be non-positive. Take v = −bi,
i.e., v ∈ Rm

+ , which impliesQv = −Qbi = −ei (since bi is the ith column ofQ−1).
Hence we get

vTQv = −bi(−Qbi) = −bi(−ei) = bii ≤ 0.

Since Q is copositive equality holds in the above relation, i.e., vTQv = 0, which
contradicts the results given in Lemma 2.12 (since (Qv)i < 0).

Note that if Q ∈ Cm then all principal submatrices are copositive. The next
result enables us to determine when a matrix is not copositive given that
certain principal submatrices are copositive. Here and in the rest of the thesis,
for a matrix Q ∈ Sm and an index set J ⊆ {1, 2, . . . ,m}, QJ will denote the
principal submatrix obtained after deleting the rows and the columns of the
matrix Q not corresponding to the elements of the index set J , i.e.,
QJ ∈ R|J |×|J | and (QJ)ij = qij for all i, j ∈ J where (QJ)ij is the ijth element
of the matrix QJ .
Theorem2.14 ([45, Theorem3.1]). LetQ ∈ Sm and let all principal submatrices
ofQ of order up tom − 1 be copositive. ThenQ /∈ Cm if and only if adj(Q) ∈ Nm

and det(Q) < 0.
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Proof. For a proof see [45, Theorem 3.1].

The following theorem is stated in [45]. Here we will include a proof for the
sake of completeness.

Theorem 2.15 (Keller [45]). A matrix Q ∈ Sm is copositive if and only if each
principal submatrixQJ for which all cofactors of the last row are nonnegative has
nonnegative determinant. This includes for |J | = 1 the condition qii ≥ 0, i ∈ U .

Proof. Suppose that Q ∈ Cm, then each principal submatrix of Q is also
copositive. So it is suf icient to show that if the cofactors of the last row ofQ are
nonnegative then the determinant is also nonnegative. It is not dif icult to verify
that v = adj(Q)em gives the cofactors of the last row. Since the cofactors of the
last row are nonnegative v is nonnegative. We ind,

vTQv = (adj(Q)em)T Q (adj(Q)em)

= eTm adj(Q)Q adj(Q)em

= det(Q)eTm adj(Q)em = det(Q){adj(Q)}mm ≥ 0 .

Since {adj(Q)}mm is nonnegative the only possibility when det(Q) can be
negative is when {adj(Q)}mm = 0. Since the cofactors of the last row are
nonnegative this implies that the last column in adj(Q) is nonnegative. Hence if
det(Q) < 0, then we will get a non-positive column in Q−1 which is a
contradiction to Lemma 2.13.
For the converse suppose that each principle submatrix QJ for which all

cofactors of last row are nonnegative have nonnegative determinant. In order
to show thatQ ∈ Cm holds we will use induction with respect tom.
We start the induction withm = 1, where the assumption yields q11 ≥ 0.
For the induction step we suppose that all principal submatrices of order k ≤

m− 1 are copositive. Now for k = mwe have two conditions:

i. each principal submatrix QJ for which all cofactors of the last row are
nonnegative have nonnegative determinant.

ii. all the principal submatrices of orderm− 1 are copositive.

Suppose now that ii. holds and the matrixQ is not copositive, i.e.,Q /∈ Cm. Then
from Theorem 2.14, we have adj(Q) ∈ Nm and det(Q) < 0. But this is a clear
contradiction to i. above. This concludes the proof.

The characterization above suggests to check copositivity with the help of the
computation of the determinants of all 2m − 1 principal submatrices, which is
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not computationally ef icient. For the special case of tridiagonal matrices
however this characterization led to a polynomial time algorithm for testing
copositivity, see [126, Corollary 1].
The following theorem gives an alternative characterization for copositivity

which relies on the solution of a system of inequalities for each principal
submatrix instead of calculating the determinants of each submatrix.

Theorem 2.16 (Gaddum [66]). Let Q ∈ Sm. Then Q is copositive if and only if
for all J ⊆ {1, 2, . . . ,m}, the following system has a solution,

QJvJ ≥ 0 vJ ≥ 0 eT|J |vJ = 1 . (2.5)

Here vJ is the subvector such that vJ := (vj : j ∈ J).

Proof. For a simple proof see [48, Theorem 1].

2.2.3 Interior and Extreme Rays

The notions of interior and extreme rays of a cone helps to understand the
geometry of the cone which in turn is useful for characterizations. Before
proceeding further, we de ine what is meant by an extreme ray of a cone.

De inition 2.17 (Extreme Ray). LetK be a closed, pointed and full dimensional
convex cone. Then the ray generated by U ∈ K\{O} is de ined to be the set
{αU : α ≥ 0}. Moreover, U ∈ K\{O} de ines an extreme ray ofK if

U1, U2 ∈ K, U = U1 + U2 ⇒ U1, U2 ∈ {αU : α ≥ 0}

Ext(K)will denote the set of elements ofK which generate extreme rays.

In the above de inition and in the rest of the thesisO denotes the zero matrix
of appropriate dimension. A general characterization of the extreme rays of the
copositive cone is unknown. But there exists partial results. These results are
summarized below.

Theorem 2.18. Form ≥ 2 the following holds,

i. α(eieTj + eje
T
i ) ∈ Ext(Cm), where i, j = 1, · · ·m,α > 0

ii. ccT ∈ Ext(Cm) where c ∈ Rm\(Rm
+ ∪ (−Rm

+ ))

iii. PDQDP ∈ Ext(Cm) if and only if Q ∈ Ext(Cm), where P is a permutation
matrix andD is a diagonal matrix with dii > 0 for all i.
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Proof. For a proof see [52, 82].

Moreover the extreme rays of the set of copositive matrices {Q = (qij) ∈ Cm :

qij ∈ {−1, 0, 1}, qii = 1, ∀ i, j} are discussed in [93]. In the case of 5 × 5

matrices a complete characterization of extreme rays of C5 is provided by [89].
But it is still an open question whether there is an explicit characterization of
the extreme rays of the copositive cone in general.
For the copositive cone it is well known that the interior consists of the set

C+
m of so-called strictly copositive matrices (see e.g. [37, Lemma 2.3],[12,

Chapter 1, Section 2]) de ined by,

C+
m :=

{
Q ∈ Cm : vTQv = 0 implies v = o

}
, (2.6)

that is C+
m = int(Cm).

As mentioned earlier the set of all positive semide inite matrices forms a cone
which is contained in the cone of copositive matrices, i.e., S+

m ⊆ Cm. The set of
all nonnegative matrices, denoted byNm, is also contained in Cm. So clearly also
Nm+S+

m ⊆ Cm holds . Form ≤ 4 this inclusion turns into an equality [50], but for
m ≥ 5 the inclusion is strict. The following is the well known counter example.

Example 2.19 ([50, 58]). Consider the so-called Horn-matrix [50],

H =


1 −1 1 1 −1
−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1


Let v ∈ R5

+. We can write,

vTHv = (v1 − v2 + v3 + v4 − v5)
2 + 4v2v4 + 4v3(v5 − v4)

= (v1 − v2 + v3 − v4 + v5)
2 + 4v2v5 + 4v1(v4 − v5)

If v5 ≥ v4 then vTHv ≥ 0 follows from the irst expression. If v5 ≤ v4 then
vTHv ≥ 0 is obtained from the second expression. Note thatH /∈ S+

m andH /∈ Nm.
Moreover, the matrixH cannot be decomposed as the sum of a nonnegative and a
positive semide inite matrix. This follows from S+

m ⊆ Cm,Nm ⊆ Cm and the fact
that the matrixH is in Ext(C5)(cf. [93]).

In view ofNm + S+
m ⊆ Cm, it is interesting to know the relationship between
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Nm + S+
m and the interior of the copositive cone. It is well known that neither

int(Cm) ⊆ Nm + S+
m nor int(Cm) ⊇ Nm + S+

m holds true.

Example 2.20.

Q :=

(
1 1
1 0

)
=

(
1 0
0 0

)
︸ ︷︷ ︸

∈S2

+

(
0 1
1 0

)
︸ ︷︷ ︸

∈N2

but the matrix is not in the interior of the copositive cone since eT2 Qe2 = 0.

For recent results and a discussion on the geometry of the copositive cone we
refer the interested reader to [52] and the references therein.

2.3 Completely Positive Cone

In this section we will brie ly consider the completely positive cone. Here, we
will con ine ourself to a characterization of complete positivity of a matrix and
known results on the cp-rank. The last subsection will describe some results on
the extreme rays and the interior of the completely positive cone. The set of all
m × m completely positive matrices generate a closed, convex, non polyhedral
and full dimensional cone. Recall that it is called the cone of completely positive
matrices and denoted by C∗

m (cf. De inition 1.6). The matrices in C∗
m can also be

written as a sum of diadic products of rank one matrices,

C∗
m =

{
A ∈ Sm : A =

N∑
k=1

bkbTk with bk ∈ Rm
+ , N ∈ N

}
(2.7)

It is interesting to note that the span of the columns of the matrix A coincides
with the span of the decomposition vectors bi.

Lemma 2.21 ([13]). LetA ∈ C∗
m andA = BBT =

∑k
i=1 bibTi then

Span{a1, · · · , am} = Span{b1, · · · ,bk}

where a1, · · · , am and b1, · · · ,bk are the columns ofA andB respectively.

Recall that the copositive cone and the completely positive cone are dual to
each other (in Lemma 2.2, put K = Rm

+ ).
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A necessary condition for a matrix to be completely positive is that the matrix
should be nonnegative and positive semide inite. The set of all nonnegative
positive semide inite matrices is known as the set of doubly nonnegative
matrices and denoted by DNNm := S+

m ∩ Nm. For m ≤ 4 it is well known
that (see [13]),

A ∈ C∗
m if and only if A ∈ DNNm . (2.8)

Hence checking if a matrix of order four or less is completely positive amounts
to checking if the matrix is nonnegative and positive semide inite. But for the
matrices of order greater than four this is not true in general,

Example 2.22.

A =


1 1

2 0 0 1
2

1
2 1 1

2 0 0
0 1

2 1 3
4 0

0 0 3
4 1 1

2
1
2 0 0 1

2 1


It is clear thatA ∈ Nm, alsoA ∈ S+

m since,

vTAv =

(
1

2
v1 + v2 +

1

2
v3

)2

+

(
1

2
v1 +

1

2
v4 + v5

)2

+
1

2

(
v1 −

1

2
v3 −

1

2
v4

)2

+
5

8
(v3 + v4)

2

But A is not completely positive, since ⟨A,H⟩ = −1
2 , where H ∈ C5 is the Horn

matrix given in Example 2.19 (cf. De inition 1.3).

Testing if a matrix is completely positive is an NP-hard problem [51]. But for
some classes of matrices checking complete positivity is easy. For example
every diagonally dominant matrix (see De inition 2.30) is well known to be
completely positive [13, Theorem 2.5](see also (2.9)). Another example is the
class of binary matrices which are completely positive if and only if they are
positive semide inite [107, Corollary 1]. For certain specially structured sparse
matrices Dickinson and Dür have been able to formulate a linear time algorithm
for testing complete positivity [54].
The following characterization of completely positive matrices is recursive, in

the sense that it depends on the complete positivity of smaller matrices along



32 2.3. COMPLETELY POSITIVE CONE

with some other conditions (see Lemma 2.3 for the corresponding result for
copositive matrices).
Theorem 2.23. LetA ∈ Sm be written in block form,

A =

(
a vT
v V

)
then A is completely positive if and only if V = CCT for some C ∈ R(m−1)×n

+ (i.e.
V is completely positive) and there exists a nonnegative vectorw such that v = Cw
and a = wTw.

Proof. See [13, Theorem 2.16].

The smallest value of N for which the factorization (2.7) of the matrix A is
possible is called the CP-rank of the matrix and denoted by CP -rank(A).
By Lemma 2.21 the CP-rank of a completely positive matrix is always greater

than or equal to the rank of the matrix. For the case of matrices of order three or
less the CP-rank is exactly equal to the rank of the matrix [13, Theorem 3.2]. For
generalm ×mmatrices the following is known about the CP-rank.
Theorem 2.24. LetA ∈ C∗

m and r := rank(A),

i. if r ≥ 2 then it holds:

CP -rank(A) ≤ r(r + 1)

2
− 1

ii. if r ≥ 1 and there exists a nonsingular r × r principal submatrix ofA withN
zeros above the diagonal, then

CP -rank(A) ≤ r(r + 1)

2
−N

Proof. For a proof of i. see, [13, Theorem 3.4] or [84, 138], for a proof of ii.
see [138] or [13, Theorem 3.5].

For recent results on CP-rank of a completely positive matrix the interested
reader is referred to [139, Corollary 5.1].
In [55], the following bound on the CP-rank of completely positive matrices

is conjectured.

Conjecture 2.25. IfA ∈ C∗
m, m ≥ 4 then CP -rank(A) ≤

⌊
m2

4

⌋
.
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De inition 2.26 (M-Matrix). Let A ∈ Rm×m then A is called an M-matrix if A
can be expressed in the form A = sI − B, where B = (bij) with bij ≥ 0, for all
1 ≤ i, j ≤ m, and s ≥ ρ(B), the maximum of the moduli of the eigenvalues ofB.

De inition 2.27 (Comparison Matrix). LetA ∈ Rm×m and,

(M(A))ij :=

{
|aij | if i = j

−|aij | otherwise

thenM(A) is called the comparison matrix ofA.

If the comparison matrix of an A ∈ Nm is an M-matrix then CP -rank(A) ≤⌊
m2

4

⌋
(for details see [55]). The Conjecture 2.25 is also proved for the matrices

associated with the so-called cycle free completely positive graphs [13]. A proof
of the Conjecture 2.25 for the case of 5× 5matrices is given in [140]. Moreover
note that, for every evenm there exists amatrixwith CP-rank m2

4 as the following
proposition, taken from [97], suggests,

Proposition 2.28 ([97]). For any evenm = 2n there exists anm×mmatrix with
CP-rank

⌊
m2

4

⌋
.

Proof. Let E be the n × n all-one matrix, I is the n × n identity matrix and ei is
its ith column. Then consider the matrix,

A =

(
nI E
E nI

)
The matrixA has a factorization,

A =

n∑
i,j=1

(
ei
ej

)(
ei
ej

)T

Clearly the above decomposition contains n2 = m2

4 matrices. Note that any
vector in a decomposition A =

∑n
i,j=1

(
bi
cj

)(
bi
cj

)T
of the matrix A will be of

the form ( bc ), b, c ∈ Rn
+ such that at most one element of b and of c is positive.

Otherwise A would have a nonzero element aij , i ̸= j, i, j ∈ {1, . . . , n} or
i, j ∈ {n + 1, . . . ,m}. So the decomposition given above is minimal, that is
CP -rank(A) = n2.
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Note that for the matrixA in the above propositionM(A) is an M-matrix since,

M(A) =

(
nI −E

−E nI

)
= n

(
I O

O I

)
−

(
O E

E O

)
.

Moreover it can be easily veri ied that n is the largest eigenvalue of
(
O E
E O

)
. It

has been recently proven that Conjecture 2.25 is false for matrices of order from
seven to eleven, for details see [31].

2.3.1 Interior and Extreme Rays

In this subsection we will brie ly survey results on the interior and extreme rays
of the completely positive cone. Wewill provide characterizations of the interior
of the completely positive cone. Wewill also prove that every positive diagonally
dominant matrix belongs to the interior of the completely positive cone.
In contrast to the copositive cone, an easy characterization for the interior of

the completely positive cone C∗
m is not known. However, from C∗

m ⊆ S+
m ∩ Nm

we have,

int(C∗
m) ⊆ int(S+

m) ∩ int(Nm)

So a necessary condition for a matrix A ∈ C∗
m to be in the interior of the

completely positive cone is that the matrixA is positive de inite, i.e.,A ∈ S++
m .

Dür and Still [59] have given a characterization of the interior of the
completely positive cone. Dickinson [53] has added other characterizations.
Here are these results.

Theorem 2.29. The interior of the completely positive cone is given by,

int(C∗
m) =


N∑
k=1

bkbTk :
bk ∈ Rm

+ ∀ k = 1, · · · , N
bk ∈ Rm

++ ∀ k = 1, · · · ,m
Span{b1, · · · ,bN} = Rm


=

{
N∑
k=1

bkbTk :
b1 ∈ Rm

++,bk ∈ Rm
+ ∀ k = 2, · · · , N

Span{b1, · · · ,bN} = Rm

}

where Rm
++ := {b ∈ Rm : bi > 0, ∀ i = 1, . . . ,m}.

Proof. For a proof see [59] and [53].
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The characterization given in Theorem 2.29 provides a way to check if a matrix
is in the interior of the completely positive cone or not. However this requires
a completely positive matrix to be decomposed in a certain way. Recently Zhou
and Fan [156] have presented an algorithm which when applied to a completely
positive matrix A ∈ C∗

m returns the decomposition of the matrix in the form
given in Theorem 2.29, if the matrix A ∈ int(C∗

m).
Here we will consider some matrices which belong to the interior of the

completely positive cone. As a irst example consider the matrix A = I + bbT ,
where b is a positive vector. Then clearly A is completely positive. Take,
t =

√
bT b+1−1
bT b

, then

A = (I + tbbT )(I + tbbT )T = I + (2t+ t2bTb)bbT = I + bbT

Since rank(A) = m, and there arem columns in thematrix (I+ tbbT ), it follows
CP -rank(A) = m [138] and by Theorem 2.29 A ∈ int(C∗

m).
Before presenting our next example we shall de ine the set of diagonally

dominant matrices.

De inition 2.30 (Diagonally Dominant). LetA = (aij) ∈ Sm and

ui := |aii| −
m∑

j=1,i ̸=j

|aij |

then if ui ≥ 0 for all i ∈ U the matrix is called diagonally dominant.

It is well known that every nonnegative diagonally dominant matrix is
completely positive. Indeed it is not dif icult to verify that such a matrix can be
decomposed as follows (see also [100]),

A =

m∑
i=1

uieie
T
i +

m∑
i=1,j=i+1

aij(ei + ej)(ei + ej)
T . (2.9)

In the next theoremwewill show that every positive diagonally dominantmatrix
belongs to the interior of the completely positive cone. Note that the positive
diagonally dominantmatrices of order twomaybe singular. Take for example the
matrix ( 1 1

1 1 ). But for matrices of orderm > 2, the positive diagonally dominant
matrices are always nonsingular.
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Lemma 2.31. LetA ∈ Sm,m > 2, be diagonally dominant and positive, thenA is
nonsingular.

Proof. It is well known that a diagonally dominant matrix with at least one i ∈ U
such that ui > 0, is nonsingular (see e.g. [94, Corollary 7.2.3]). Now consider the
case when ui = 0 for all i ∈ U and let s ≤ aij ≤ l. Then the following bounds on
the eigenvalues ofA are provided in [90, Lemma 7.1]:

(m−2)s ≤ λi ≤ (m−2)l for 1 ≤ i ≤ m−1, and 2(m−1)s ≤ λm ≤ 2(m−1)l.

HenceA is nonsingular.

Theorem 2.32. Let A ∈ Sm,m > 2, be diagonally dominant and positive, then
A ∈ int(C∗

m).

Proof. In view of Lemma 2.31 it is clear that A is of full rank. Let us consider
l := min{1,mini,j=1..m{aij}}, and de ine b = [l, · · · , l]T , then it is not dif icult to
see thatB := A−bbT is nonnegative. Nowwewill show thatB is also diagonally
dominant.

bii −
∑
i̸=j

bij = aii − l2 −
∑
i ̸=j

(aij − l2)

= aii −
∑
i̸=j

aij + (m− 2)l2 ≥ 0 .

HenceB is diagonally dominant and a decomposition ofA is given by

A = bbT +

m∑
i=1

(bii −
∑
i̸=j

bij)eie
T
i +

m∑
j>i

bij(ei + ej)(ei + ej)
T .

Since b ∈ Rm
++, by Theorem 2.29A ∈ int(C∗

m).

Here we would like to mention that the proof of Theorem 2.32 is independently
obtained by [139, Theorem 2.2]. The following is an immediate corollary of the
above theorem.

Corollary 2.33. LetA ∈ Nm be positive and let its comparison matrix,M(A), be
an M-matrix then,A ∈ int(C∗

m).

Proof. It is well known that if M(A) is an M-matrix then there exists a positive
diagonal matrix D such that DAD is diagonally dominant (see e.g. [55, page
305]). Since D is positive, so is DAD. Let DAD = BBT such that B ∈ Rm×n

+

has at least one positive column. Note that such a decomposition exists owing
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to Theorem 2.32. Then clearly A = D−1B(D−1B)T will have at least one
column positive, and by Theorem 2.29A ∈ int(C∗

m).

The extreme rays of the completely positive cone are very well known and
described below.

Lemma2.34. The extreme rays of the coneC∗
m are the rank onematricesU = uuT ,

where u ∈ Rm
++.

Proof. See e.g. [82, Theorem 3.1 ].
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3
The Standard Quadratic Programming

Problem

I the optimization literature quadratic programming (QP)
normally refers to the set of problems with linear constraint(s)

and quadratic objective function. In this chapter we will focus on a
special instance of QP namely the standard quadratic programming
problem (StQP). Our special interest in this program stems from the
fact that it just represents the feasibility test in copositive
programming. In sections two and three we will provide optimality
conditions and a stability analysis for StQP, respectively. The notion
of strict local maximizer of StQP is related, as we will see, to the
concept of evolutionarily stable strategies (ESS) from population
genetics. In section four we will provide a brief survey of
evolutionarily stable strategies while focusing on the maximum
number of ESS which can coexist for a certain matrix. The ifth
section deals with vector iterations which are related to StQP and a
similar program. In the last section we will look at some genericity
results for the strict local maximizers of StQP.

39
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3.1 Introduction

The standard quadratic programming problem can be written in the following
form,

(StQP ) max q(v) :=
1

2
vTQv s.t. v ∈ ∆m :=

{
v ∈ Rm

+ :
m∑
i=1

vi = 1

}
.

whereQ ∈ Sm. Standard quadratic programming is very well studied due to its
vast applications in the areas of resource allocation problems [95], portfolio
optimization problems [111], maximum weight clique problem [70, 115] and
population genetics [35]. StQP is known to be NP-hard [115, 150]. In Bomze et
al [29] a good survey of algorithms/methods for solving/approximating StQP is
provided. There has been much work done on theory and algorithms for StQP
(see e.g. [25]). However, the question of stability of StQP is not answered
satisfactorily in the literature. In this chapter we will provide a stability
analysis for StQP along with a characterization for a point to be a strict local
maximizer, a review on evolutionarily stable strategy, vector iterations related
to StQP and some genericity results.
Before proceeding further, note that (StQP ) can be used to formulate the

feasibility criteria for programs over the cone of copositive matrices. In order to
see this consider the copositive program in subsection 1.3.3 where it is
required to check if the matrix F (x) ∈ Sm is copositive. This can be done by
solving (StQP )withQ := −F (x) and checking if val(StQP ) is non-positive.

3.2 Optimality Conditions

In this section the second order necessary and suf icient conditions for strict
local maximizers of (StQP ) are formulated. For this purpose irst we de ine the
Lagrange function associated with (StQP ),

L(v, λ, µ) = q(v)− λ(eTv− 1) + µTv

where λ ∈ R, µ ∈ Rm
+ . Then the KKT conditions for v ∈ ∆m read,

∇vL(v, λ, µ) = Qv− λe+
∑

i̸∈R(v)

µiei = 0, µi ≥ 0, (3.1)
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where R(v) is the support of the vector v de ined below,

De inition 3.1 (Support of a Vector). Let v ∈ Rm
+ , then

R(v) := {i : vi > 0}. (3.2)

Note that the constraints in (StQP ) are linear and the so called linear
independence constraint quali ication (see e.g. [63, page 280]) is satis ied
implying that the Lagrange multipliers are uniquely determined. Let v, λ, µ
satisfy the KKT conditions (3.1) then as usual v, µ is said to satisfy strict
complementarity if vi = 0 implies µi > 0. De ine also for v, µ satisfying the KKT
conditions,

S̃(v) := {i : µi = 0} (3.3)

then clearly we have R(v) ⊆ S̃(v). Moreover, strict complementarity is
equivalent to R(v) = S̃(v).
A vector d ∈ Rm is said to be a feasible direction with respect to a feasible

point v if there exists α > 0 such that v+ αd is also feasible. The conditions for
optimality in nonlinear programming are generally described in terms of
feasible directions or more precisely with the help of the cone of critical
directions [63, Theorem 12.6]. For (StQP ) the cone of critical directions can be
written as follows,

C(v) := {d ∈ Rm : (Qv)Td ≥ 0, eTd = 0, di ≥ 0 ∀i /∈ R(v)} (3.4)

Remark 3.2. Let v ∈ ∆m, µ ∈ Rm
+ satisfy the KKT conditions (3.1) and let d ∈

C(v), then

0 ≤ (Qv)Td =

λe−
∑

i̸∈R(v)

µiei

T

d = −
∑

i̸∈R(v)

µidi

= −
∑

i̸∈S̃(v)

µidi −
∑

i∈S̃(v)\R(v)

µidi

= −
∑

i̸∈S̃(v)

µidi ≤ 0

Since µi > 0 for all i /∈ S̃(v) and di ≥ 0 for all i /∈ S̃(v) (di ≥ 0 for all i /∈ R(v)
implies di ≥ 0 for i /∈ S̃(v) ) ,hence from the above we conclude that di = 0 for all
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i /∈ S̃(v). So for a KKT point v ∈ ∆m the cone of critical direction (3.4) reduces to,

C(v) := {d ∈ Rm : eTd = 0, di = 0 ∀i /∈ S̃(v), di ≥ 0 ∀i ∈ S̃(v)\R(v)} (3.5)

We also de ine the order of maximizer for (StQP ),

De inition 3.3 (Order of Maximizer). A feasible point v ∈ ∆m is a maximizer of
(StQP ) of order p > 0, if with some γ > 0, ε > 0 the following holds,

q(v) ≥ q(v) + γ∥v− v∥p ∀ v ∈ ∆m, ∥v− v∥ < ε . (3.6)

In the above de inition ∥.∥ denotes the Euclidean norm. De ine also for ε > 0,
the ε-neighbourhood of the point v ∈ Rm byNϵ(v) := {v ∈ Rm : ||v− v|| ≤ ε}.
Although in the general case of nonlinear programming there is a gap

between necessary and suf icient optimality conditions, for the case of (StQP )

there is no gap,

Theorem 3.4. Let v ∈ ∆m then,

i. v is a strict local maximizer of (StQP ) if and only if v satis ies the KKT
conditions (3.1) and dTQd < 0 for all d ∈ C(v)\{o}.

ii. v is a local maximizer of (StQP ) if and only if v satis ies the KKT conditions
(3.1) and dTQd ≤ 0 for all d ∈ C(v).

iii. If v is a strict local maximizer of (StQP ) then with some γ, ε > 0 we have,

q(v)− q(v) ≥ γ∥v− v∥2 ∀ v ∈ Nε(v) ∩∆m

that is, v is also a strict local maximizer of order two.

Proof. i. ⇒ Let v be a strict local maximizer. For the sake of contradiction we
assume that there exists a o ̸= d ∈ C(v) such that dTQd ≥ 0. Now for a small
α > 0, it is clear that v+ αd ∈ ∆m then

(v+ αd)TQ(v+ αd)− vTQv = 2αvTQd+ α2dTQd
≥ α2dTQd ≥ 0 .

This holds since d ∈ C(v) implies vTQd ≥ 0. Since α > 0, we arrive at a
contradiction that v is not a strict local maximizer.
⇐We directly prove that the condition dTQd < 0, for all o ̸= d ∈ C(v) implies
that v is a strict local maximizers of order two (see iii.). So let dTQd < 0 for all
o ̸= d ∈ C(v) but assume v ∈ ∆m is not a strict local maximizer of order two.
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Then there exists an in inite sequence of feasible points vk → v satisfying vk ̸= v
and,

q(vk)− q(v) ≥ o
(
∥vk − v∥2

)
.

Nowwewrite vk = v+tkdk wheredk ∈ Rm, ||dk|| = 1, tk > 0, tk → 0 as vk → v.
The sequence dk has a subsequence converging to some vector d, ||d|| = 1, i.e.,
without loss of generalitydk → d. The existenceof sucha subsequence is evident
since dk forms a sequence in the compact set of all vectors with unit norm. First
we will show that d ∈ C(v). For this we consider

o
(
t2k
)
≤ q(vk)− q(v) = tk(Qv)Tdk +

1

2
t2kdT

kQdk . (3.7)

Divide (3.7) by tk and take k → ∞ to arrive at (Qv)Td ≥ 0. Note that from
vk ∈ ∆m and 0 ≤ (vk)i = vi + (dk)i, we can conclude that (dk)i ≥ 0 for all
i /∈ R(v). Note also thatvk ∈ ∆m implieseTvk = eT (v+tkdk) = 1 andeTdk = 0.
For k → ∞ this leads to eTd = 0. Hence we can conclude that d ∈ C(v).
From (3.7), the KKT conditions and the observation that (dk)i ≥ 0 for all i ̸∈

R(v) and µ ∈ Rm
+ we obtain,∑i/∈R(v) µi(dk)i ≥ 0. So we have,

o
(
t2k
)
≤ tk(Qv)Tdk +

1

2
t2kdT

kQdk

= tk

(
λe−

∑
i/∈R(v)

µiei

)T
dk +

1

2
t2kdT

kQdk

= −tk
∑

i/∈R(v)

µi(dk)i︸ ︷︷ ︸
≥0

+
1

2
t2kdT

kQdk

≤ 1

2
t2kdT

kQdk

Dividing by t2k and letting k → ∞ gives,

dTQd ≥ 0

leading to a contradiction to the hypothesis and this also proves iii.
ii. Can be proven in a similar way.

Here we would like to mention that, in the literature ( see e.g. [20, 22, 23, 24,
27]), the characterization for a strict local maximizer of StQP requires that strict
complementarity holds while the characterization given in Theorem 3.4 does
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not impose such a condition.
In the literature the cone of critical directions is used for second order

conditions. Second order necessary and suf icient conditions are also
formulated in terms of so called Tangent spaces. Let v ∈ ∆m satisfy the KKT
conditions (3.1), then for the case of (StQP ) the tangent spaces are given by,

T (v) := {d ∈ Rm : eTd = 0, di = 0 ∀i /∈ R(v)} (3.8)
T+(v) := {d ∈ Rm : eTd = 0, di = 0 ∀i /∈ S̃(v)}. (3.9)

It can be readily veri ied that T (v) ⊆ C(v) ⊆ T+(v). Moreover if strict
complementarity holds at the KKT point v then the three cones are equal.

Corollary 3.5 ([24]). Let v ∈ ∆m satisfy the KKT conditions (3.1). Let strict
complementarity hold at v, i.e., R(v) = S̃(v). Then v is a strict local maximizer if
and only if dTQd < 0 for all d ∈ T (v)\{o}.

Proof. Follows immediately from Theorem 3.4.

Remark 3.6. As mentioned before, in general nonlinear programming, there is a
gap between second order necessary and suf icient optimality conditions. But for
the special case of (StQP ) it is shown that there is no gap. As a matter of fact our
result can be seen as a special instance of a more general result which says that if
the feasible set of the quadratic program is convex then there is no gap between
second order necessary and suf icient conditions for optimality, for details see [32,
Theorem 4].

We have presented optimality conditions, now we will focus on another
interesting result which in turn leads to conditions on the matrix such that the
existence of a strict local maximizer is guaranteed. First we will provide some
auxiliary results required in the proof.

De inition 3.7 (Af ine Subspace). An af ine subspaceW ⊆ Rm is the translation
of a subspace V ⊆ Rm by a vector u, i.e.,

W = {w ∈ Rm : w = u+ v, v ∈ V }.

Moreover dim(W ) := dim(V ), where dim(V ) denotes the dimension of the
space V .
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De inition3.8 (Af ineHull). ForS ⊆ Rm, the set of all af ine combinations aff(S)
of S is called af ine hull of S, i.e.,

aff(S) =
{

k∑
i=1

αivi : vi ∈ S, αi ∈ R, i = 1...k,
k∑

i=1

αi = 1, k ∈ N

}
.

It is not dif icult to show that aff(S) is the smallest af ine space containing S.

De inition 3.9 (Relative Interior). Let S be a convex set. A point v ∈ S is in the
relative interior of S, denoted by rint(S), if for any v ∈ S there exists ṽ ∈ S and
0 < λ < 1 such that

v = λv+ (1− λ)ṽ .

The following lemma states that if a point v belonging to the relative interior
of a convex set is a local maximizer of the quadratic form, then it is a global
maximizer on the af ine hull of the convex set,

Lemma 3.10. Let v be a local maximizer of q(v) := 1
2v

TQv on a convex set S ⊆
Rm and v ∈ rint(S), then with aff(S) = v+ V we have:

i. For all u ∈ V it holds

vTQu = 0 and uTQu ≤ 0

and v is a global maximizer of q on aff(S) .

ii. If moreover q(v) = 0, then v is a global maximizer of q(v) on Span{v} + V ,
i.e.,

wTQw ≤ 0 ∀ w ∈ Span{v}+ V .

Proof. i. Since v ∈ rint(S), so for each u ∈ V, ∥u∥ = 1 there exists ε > 0 such
that v± λu ∈ S for all 0 ≤ λ < ε. Moreover v is a local maximizer of S, hence,

q(v± λu) ≤ q(v)
(v± λu)TQ(v± λu) ≤ vTQv
λ2uTQu± 2λvTQu ≤ 0 .

Take λ > 0 then,
λuTQu± 2vTQu ≤ 0 .

So, for λ → 0 we obtain vTQu = 0 which implies uTQu ≤ 0. Since uTQu ≤ 0
holds for all u ∈ V , hence, v is global maximizer on aff(S).
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ii. We consider part i. and obtain for any α ∈ R, u ∈ V ,

(αv+ u)TQ(αv+ u) = α2vTQv+ 2αvTQu+ uTQu ≤ 0 .

Lemma 3.10 is simple and straightforward, however this lemma has a number
of consequences. One consequence is that if v is a local maximizer of q(v) on an
open subset of Rm, then v is a global maximizer on Rm. Moreover, in this case
Q is negative semide inite. Another consequence of this lemma is that if some
point is a local maximizer on a certain face of the simplex∆m and it also belong
to the relative interior of the face, then the point is a global maximizer on the
af ine hull of the face. Before formally stating this result we will de ine the face
of a convex set.

De inition 3.11 (Face). Let S be a convex set and F ⊆ S. Then F is called a face
if for any v1, v2 ∈ S it holds that λv1+(1−λ)v2 ∈ F for some 0 < λ < 1 implies
v1, v2 ∈ F .

In other words the above de inition says that a (convex) subset F of a convex
set S is a face of S if any line segment in S with relative interior in F has both
end points in F [131, page 162]. From the above de inition, it is clear that with
J ⊆ U , where as usual U := {1, · · · ,m}, the faces of∆m are given by,

fcJ := {v ∈ Rm
+ : eTv = 1, vj = 0, ∀ j /∈ J}

Moreover, the faces of the standard simplex are itself standard simplices of
lower dimensions.

Corollary 3.12. Let v ∈ int(fcJ) be a local maximizer of (StQP ) on a face fcJ
then v is global maximizer on aff(fcJ).

Proof. Follows directly from Lemma 3.10.

Theorem 3.13. Let v ∈ ∆m be a non-strict local maximizer of vTQv and v ∈
rint(∆m), thenQ is singular.

Proof. Since v is a local maximizer, we have from Lemma 3.10,

vTQu = 0, uTQu ≤ 0 ∀ u such that eTu = 0 (3.10)

Since v is a non-strict local maximizer from Theorem 3.4 it follows that there
exists ao ̸= d ∈ C(v) such thatdTQd = 0. Moreover, sincev is a localmaximizer
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it satis ies the KKT conditions and from Remark 3.2 we get,

vTQd = 0.

Now consider u such that eTu = 0. Then by (3.10) for δ > 0 (small)

(d± δu)TQ(d± δu) ≤ 0

⇒ ±2δuTQd+ δ2uTQu ≤ 0

Dividing by δ > 0 and taking the limit δ → 0 implies uTQd = 0. Hence we have
a d ̸= o such that eTd = 0 with uTQd = 0 for all u such that eTu = 0 and
vTQd = 0. So, in view of vTe = 1, Qd is orthogonal to the whole Rm, which
implies,Qd = o, giving thatQ is singular.

The following is an immediate corollary,

Corollary 3.14. Let v ∈ ∆m be a non-strict local maximizer with R(v) = S̃(v)
thenQR(v) is singular.

Proof. If v is a non-strict local maximizer then it is not dif icult to see that under
the condition R(v) = S̃(v), vR(v) is a non-strict local maximizer with respect to
QR(v) and vR(v) ∈ fcR(v). Then by Theorem 3.13,QR(v) is singular.

3.3 Stability Analysis

In the previous section we have presented a characterization for a point v to be
a strict local maximizer of (StQP ). In this section we shall consider the
stability properties of the maximizer. More precisely we will study the effect of
small perturbations in the matrix involved in (StQP ) on local maximizers. For
this purpose we will consider the following parametric optimization problem,

(StQPQ) max qQ(v) :=
1

2
vTQv s.t. v ∈ ∆m

where Q ∈ Sm is seen as a parameter. First we de ine for the candidate
maximizer v the matrix Iv such that Iv = [ei : i /∈ R(v)]. Then the KKT
conditions given in (3.1) can be written in the matrix form as follows, Q −e Iv

−eT 0 oT

ITv o O


v
λ

µ

 =

 o
−1

o

 (3.11)
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where µ ∈ R|U\R(v)|, o is a zero vector of appropriate dimension while O is the
|U\R(v)| × |U\R(v)|matrix of zeros. First we will give an auxiliary result.

Lemma 3.15. Let A ∈ Sm and B ∈ Rm×n be such that dTAd < 0 for all d ∈
ker{BT }\{o}. Then the matrix Q :=

(
A B
BT O

)
is nonsingular if and only if the

columns ofB are linearly independent.

Proof. ⇒ Let Q be nonsingular but let the columns of the matrix B be linearly
dependent, that is there exists a w ̸= o such that Bw = o. Then for u = o and
v := ( u

w ), we write,
Qv =

(
Au+Bw

BTu

)
=

(
o
o

)
which leads to a contradiction to the assumption thatQ is nonsingular.
⇐ Let the columns of the matrixB be linearly independent and let the matrixQ
be singular,i.e., there exists an o ̸= v := ( u

w ) ∈ Rm+n such that Qv = o. So we
have,

Au+Bw = o (3.12a)
BTu = o (3.12b)

From (3.12b) we can conclude that u ∈ ker{BT }. If u = o then w ̸= o
(otherwise v = o). So from (3.12a) we get Bw = o which is a contradiction to
the basic hypothesis that the columns of B are linearly independent. Now if
o ̸= u ∈ ker{BT } then from (3.12a) we get uTAu = −uTBw = −(BTu)w
which using (3.12b) reduces to uTAu = 0 hence we arrive at a contradiction to
the hypothesis that dTAd < 0 for all o ̸= d ∈ ker{BT }.

In the following theorem we will show that for a strict local maximizer
satisfying the KKT condition with strict complementarity, locally, the
maximizer changes smoothly with the matrix Q. The following theorem is a
special case of the result given in [64, Theorem 6].

Theorem 3.16. Let v ∈ ∆m satis ies the KKT conditions (3.1) with respect to the
matrix Q with Lagrange multipliers λ and µ and let v, µ satisfy the strict
complementarity conditions, i.e., S̃(v) = R(v). In addition assume that
dTQd < 0 holds for all o ̸= d ∈ C(v) (i.e., v is a strict local maximizer). Then
there exits a C∞ function f : Nε(Q) → Nδ(v, λ, µ), f(Q) = (v(Q), λ(Q), µ(Q))
such that v(Q) is a strict local maximizer of (StQPQ) and f(Q), v(Q), µ(Q)
satis ies strict complementarity.
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Proof. De ine the system of equations,

F (Q, v, λ, µ) :=

 Q −e Iv
−eT 0 oT
ITv o O

v
λ
µ

 =

 o
−1
o

 (3.13)

where µ ∈ R|U\R(v)|
+ , then the Jacobian of F with respect to v, λ, µ reads,

∇v,λ,µF (Q, v, λ, µ) :=

 Q −e Iv
−eT 0 oT
ITv o O


First we will show that the matrix ∇v,λ,µF (Q, v, λ, µ) is nonsingular. We take
B := [−e Iv] and note that ker{BT } = T (v) (see (3.8)). Recall that from strict
complementarity we have C(v) = T (v). Moreover the columns of the matrix B
are linearly independent, so from the conditions dTQd < 0 for all
o ̸= d ∈ C(v) = T (v) (since R(v) = S̃(v)) we can conclude that the matrix
∇v,λ,µF (Q, v, λ, µ) is nonsingular. Hence by the inverse function theorem (see
e.g. [133, Theorem 9.24]) there exists ε > 0 and δ > 0 and a C∞ function f ,

f : Nε(Q) → Nδ(v, λ, µ)

such that f(Q) = (v, λ, µ) and (v(Q), λ(Q), µ(Q)) ∈ Nδ(v, λ, µ) is the unique
solution of (3.13).
In order to show that v(Q) is a strict local maximizer, we will show that v(Q)

satis ies the second order suf icient condition. For the sake of contradiction we
assume that there exists an in inite sequence Qk → Q and critical vectors dk ∈
C(v(Qk)), ∥dk∥ = 1, such that

dT
kQkdk ≥ 0 (3.14)

We can assume that dk → d (as we did in Theorem 3.4) with ∥d∥ = 1. First we
will show that d ∈ C(v). For simplicity of notation take vk := v(Qk) and note
that dk ∈ C(vk) will imply that eTdk = 0, (Qkvk)Tdk ≥ 0 and (dk)i ≥ 0 for all
i /∈ R(vk). Taking k → ∞ and noting that from (3.13) we get, R(vk) = R(v)we
arrive at d ∈ C(v). Now taking k → ∞ in (3.14) gives dTQd ≥ 0which is a clear
contradiction to the assumption dTQd < 0 for all o ̸= d ∈ C(v).
We choose ε > 0, such that µ(Q) > 0 for all Q ∈ Nε(Q) in order to preserve

strict complementarity.

In the following example wewill show that the strict complementarity condition
is indeed essential to assure the stability of a strict local maximizer in (StQPQ).
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Example 3.17 ([17]). Consider the matrix,

Q :=

0 0 1
0 0 1
1 1 1


It is not dif icult to verify that v := e3 is a strict localmaximizer 1 andR(e3) := {3},
S̃(e3) := {1, 2, 3}. Now consider the perturbed matrix,

Qε :=

 0 −ε 1− ε
−ε 0 1− ε
1− ε 1− ε 1− 2ε


In this case for every v := (v1, v2, v3)

T ∈ ∆3 we have,

vTQεv = (1− ε)v1v3 + (1− ε)v2v3 + (1− ε)v3 − ε(v23 + 2v1v2)

= 1− (v1 + v2)
2 − 2ε(1− v1)(1− v2)

It is not dif icult to verify that vα := (1 − α)(ε, 0, 1 − ε)T + α(0, ε, 1 − ε)T for
0 ≤ α ≤ 1, is a local maximizer.

Our next result will establish the Lipschitz stability. First we de ine the
Lipschitz continuity,

De inition 3.18 (Lipschitz Continuity). A function f : Rn → Rl is said to be
Lipschitz continuous at a point v0 ∈ Rn if there exists a constant L, ε > 0
such that

∥f(v)− f(v0)∥ ≤ L∥v− v0∥ ∀ v ∈ Nε(v0).

The following Lemma is useful for the proof of the next two theorems,

Lemma3.19. LetQ ∈ Sm and let v ∈ ∆m be a strict local maximizer with respect
to Q then there exist ε > 0, δ > 0 and v (Q) ∈ Nδ (v) ∩ ∆m such that for all
Q ∈ Nε

(
Q
)
, the point v (Q) is a local maximizer with respect toQ.

Proof. Since v is a strict local maximizer and by continuity there exists ε > 0,
α > 0, δ > 0 such that

qQ(v) ≥ qQ(v)−
α

2
∀ Q ∈ Nε(Q) (3.15)

qQ(v) ≤ qQ(v)− 2α ∀ v ∈ ∆m such that ||v− v|| = δ (3.16)

1since eT3 Qe3 = 1 > vTQv = 1− (v1 + v2)
2 for all e3 ̸= v := (v1, v2, 1− v1 − v2) ∈ ∆3
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qQ(v) ≤ qQ(v)− α ∀ v ∈ ∆m, such that ||v− v|| = δ, and Q ∈ Nε(Q).

(3.17)

Combining (3.15) and (3.17) we have,

qQ(v) ≥ qQ(v)−
α

2
≥ qQ(v) +

α

2

∀ v ∈ ∆m, such that ||v− v|| = δ,

and Q ∈ Nε(Q)

So, there exists a global maximizer v = v(Q) on ∆m ∩ Nδ(v) with ∥v − v∥ < δ
which is a local maximizer.

In the following theorem and throughout the thesis for amatrixQ ∈ Rm×m, ∥Q∥
denotes the Frobenius norm of the matrix Q, i.e., ∥Q∥ :=

√
tr(QQT ).

Theorem 3.20. Let Q ∈ Sm and let v ∈ ∆m be a strict local maximizer with
respect toQ. Then there exist ε > 0, δ > 0 andL > 0 such that for allQ ∈ Nε

(
Q
)

and for all local maximizers v (Q) of (StQPQ) with v (Q) ∈ Nδ (v) the following
holds,

∥v (Q)− v∥ ≤ L
∥∥Q−Q

∥∥ .
Proof. Since v is a strict local maximizer by Theorem 3.4 it must satisfy the
second order condition. So there exist γ, δ > 0 such that,

γ ∥v− v∥2 ≤ qQ (v)− qQ (v) ∀ v ∈ Nδ (v) ∩∆m (3.18)

From Lemma 3.19 it is clear that there exist a local maximizer v (Q)with respect
to thematrixQ ∈ Nε(Q). For the ease of notation we take v := v (Q). Now since
v is a local maximizer with respect toQ ∈ Nε(Q), we have,

qQ (v)− qQ (v) ≤ 0

De ine h (v) := qQ (v)− qQ (v). Using the mean value theoremwith respect to v,
with 0 < τ < 1, we ind

h (v)− h (v) = ∇vh (v+ τ (v− v)) (v− v)
≤ ∥∇vh (v+ τ (v− v))∥ ∥(v− v)∥
= ∥(v+ τ (v− v))T (Q−Q)∥∥v− v∥
≤ ∥v+ τ (v− v) ∥∥Q−Q∥∥v− v∥
≤ max

w∈Nδ(v)
∥w∥

∥∥Q−Q
∥∥ ∥v− v∥
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Finally consider,

qQ (v)− qQ (v) =
[
qQ (v)− qQ (v)

]
−
[
qQ (v)− qQ (v)

]
+ [qQ (v)− qQ (v)]

= h(v)− h(v) + [qQ (v)− qQ (v)]︸ ︷︷ ︸
≤0

≤ h(v)− h(v)
≤ max

w∈Nδ(v)
∥w∥

∥∥Q−Q
∥∥ ∥v− v∥

Take c := max
w∈Nδ(v)

∥w∥ then the above relation together with (3.18) implies,

γ ∥v− v∥2 ≤ c
∥∥Q−Q

∥∥ ∥v− v∥

Hence the result follows with L := c
γ .

In Example 3.17 the maximizer does not satisfy strict complementarity and we
have shown that there exists a matrix in the neighbourhood which does not
have a strict local maximizer. But there exists situations where a strict local
maximizer behaves stable even if the strict complementarity does not hold.
Consider the following example,

Example 3.21. Consider the matrix,

Q :=

0 1 1
1 0 1
1 1 1


It is not dif icult to verify that e3 is a strict local maximizer2 and R(e3) := {3},
S̃(e3) := {1, 2, 3}. In order to show that each matrix in the neighbourhood has a
unique strict localmaximizer near e3 it is suf icient (aswewill see in Theorem3.22)
to show that dTQd < 0 for all o ̸= d ∈ T+(e3) (see (3.9)). First we calculate
T+(e3),

T+(e3) := {d ∈ R3 : eTd = 0, di = 0 ∀i /∈ S̃(e3)}
:= {d ∈ R3 : d1 + d2 + d3 = 0}

Now for o ̸= d ∈ T+(e3) we get,

dTQd = d1(d2 + d3) + d2(d1 + d3) = −((d2 + d3)
2 + d22) = −(d21 + d22) < 0.

2since eT3 Qe3 = 1 > 1− (v21 + v22) = vTQv for all e3 ̸= v := (v1, v2, 1− v1 − v2) ∈ ∆3
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A KKT point v ∈ ∆m with respect to (StQPQ) is said to satisfy the strong second
order condition if dTQd < 0 for all d ∈ T+(v) (see (3.9)). Theorem 3.22 states
that if the strict local maximizer v satis ies the strong second order suf icient
condition then locally the strict local maximizers, with respect to the matrix Q,
behave Lipschitz continuous. Note that the result presented in Theorem 3.22 is
a special case of the result in [98, Theorem 2]. For the sake of completeness we
also provide a proof.
Theorem 3.22. LetQ ∈ Sm and let v ∈ ∆m satisfy the KKT conditions (3.1)with
respect to o ̸= Q, with Lagrange multipliers λ and µ. In addition let dTQd <
0 hold for all d ∈ T+(v). Then there exist ε, δ > 0 and a Lipschitz continuous
function f : Nε(Q) → Nδ(v, λ, µ), f(Q) = (v(Q), µ(Q), λ(Q)) such that v(Q)
is a strict local maximizer with respect to Q. Moreover v(Q) is the unique local
maximizer with respect toQ in a neighbourhood of v.

Proof. From Lemma 3.19 it is clear that there exist a local maximizer v (Q)with
respect to the matrix Q ∈ Nε(Q). The maximizer v(Q) must lie on one of the
faces ( say fcR) of ∆m with R(v) ⊆ R ⊆ S̃(x). So with Rc := U\R, Sc(v) :=
U\S̃(v), Rc(v) := U\R(v), it is clear that

Sc(v) ⊆ Rc ⊆ Rc(v) (3.19)

The maximizer property of v(Q) and continuity will imply that the
corresponding multipliers λ(Q) ∈ R, µ(Q) ∈ R|Rc|

+ must be the solution of one
of the ( initely many) systems of KKT equations, Q −e IR

−eT 0 0
IR 0 0

v
λ
µ

 =

 o
−1
o

 (3.20)

where IR := [ei : i /∈ R]. By the strong second order condition, i.e., dTQd < 0
for all o ̸= d ∈ T+(v), for any R in (3.19) the system matrices of (3.20) are
nonsingular inNε(Q) for ε > 0 small enough. So theKKTpointsv(Q),λ(Q),µ(Q)
must coincide with values of one of the ( initely many) rational C∞ functions,v(Q)

λ(Q)
µ(Q)

 =

 Q −e IR
−eT 0 0
IR 0 0

−1 o
−1
o

 (3.21)

Wenowshow that for ε > 0 small enough anyQ ∈ Nε(Q) can have atmost one
local maximizer inNδ1(v), for some δ1 > 0. Assume that there exists a sequence
Qν → Q, ν → ∞ and two local maximizer v1ν ̸= v2ν of 1

2vQνv over∆m such that
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v1ν , v2ν ∈ Nδ1(v). Each sequence vρν , ρ = 1, 2must have a limit point vρ ∈ Nδ(v).
By a continuity argument qQ(vρ) = qQ(v) and thus vρ = v, ρ = 1, 2. Without
loss of generality consider a sequence of solutions such that vρν → v and that
for all ρ, vρν are solution of (3.20) for (the same) index set R1 ̸= R2 satisfying
S̃c(v) ⊆ Rc

ρ ⊆ Rc(v) for ρ = 1, 2:

Qνvρν − λρ
νe+ IRρµ

ρ
ν = 0, eTvρν = 1, [vρν ]j = 0 j ∈ Rρ, ρ = 1, 2. (3.22)

Since either qQν (v1ν) ≤ qQν (v2ν) or qQν (v1ν) ≥ qQν (v2ν) holds again by selecting a
subsequence, without loss of generality, we assume,

0 ≤ qQν (v2ν)− qQν (v1ν) ∀ ν ∈ N (3.23)

By putting dν := v2ν−v1ν
||v2ν−v1ν ||

we can assume dν → d, ||d|| = 1. Observe that eTdν =

0 holds and since (v1ν)j = 0 for all j ∈ R1 (see (3.22)), then

(v2ν)j − (v1ν))j ≥ 0 ∀j ∈ R1 (3.24)

and thus (dν)j ≥ 0 for all j ∈ R1. By taking the limit ν → ∞ we ind eTd = 0

with dj = 0 for all j /∈ S̃(v) and dj ≥ 0 for all j ∈ R1. In particular d ∈ T+(v).
In view of (3.23) and using the KKT conditions for v1ν we obtain,

0 ≤ qQν (v2ν)− qQν (v1ν)

= (v2ν − v1ν)TQνv1ν +
1

2
(v2ν − v1ν)TQν(v2ν − v1ν)

= −(v2ν − v1ν)T IR1µ
1
ν +

1

2
(v2ν − v1ν)TQν(v2ν − v1ν)

≤ 1

2
(v2ν − v1ν)TQν(v2ν − v1ν)

Since (v2ν−v1ν)T IR1µ
1
ν ≥ 0by (3.24). By dividing these relations by ||v2ν−v1ν || and

letting ν → ∞ it follows dTQd ≥ 0with o ̸= d ∈ T+(v)which is a contradiction
to the strong second order condition.

Note that for the matrix Q in Example 3.17 the strong second order suf icient
condition does not hold.

3.4 Evolutionarily Stable Strategy

The concept of an evolutionarily stable strategy (ESS) was de ined by Maynard-
Smith and Price [142]. The concept was introduced as the application of a game
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theoretic model to the con lict among animals. In order to give a mathematical
formulation, the con lict among animals is described by an m × m matrix Q =

(qij)where qij is the expected gain a user of pure strategy i gets whose opponent
uses pure strategy j. If a user plays each pure strategy with a certain probability
then its strategy is called mixed strategy. So the set of all available strategies
can be denoted by the unit simplex ∆m. The mean payoff to a user of strategy
v ∈ ∆m whose opponent plays the strategy u ∈ ∆m is then vTQu. Now consider
(see [91]) an in initemonomorphic populationwhich has achieved a stable state
and assume that some new population of size ε invade the current population.
These mutant/migrant are users of a mixed strategy u. Then the ESS conditions
for v say that the average gain of the user of strategy v is strictly greater than the
average gain of the mutant/migrant which are using strategy u i.e.,

(1− ε)vTQv+ εvTQu > (1− ε)uTQv+ εuTQu ∀ ε > 0 small (3.25)

Now in the limiting case ε → 0 we will have for all u ̸= v, vTQv ≥ uTQv and
in the case of equality we will have, vTQu > uTQu [91]. Hence an ESS can be
de ined in the following way,
De inition 3.23 (Evolutionarily Stable Strategy (ESS)). Let Q ∈ Rm×m, then
v ∈ ∆m is an ESS with respect to the matrixQ if following two conditions hold,

i. vTQv ≥ uTQv ∀ u ∈ ∆m

ii. if u ∈ ∆m, v ̸= u, vTQv = uTQv then vTQu > uTQu

For a reviewof the ESS theory the interested reader is referred to [91]. In [112,
141] the mathematical foundation and its relation to the theory of evolution is
discussed. The computational complexity of ESS is discussed in [62, 118]. Some
exact and approximate algorithms for inding ESS is the topic of [21].
In the case of symmetric matrices the concept of ESS is directly related to the

maximization problem (StQP ).
Proposition 3.24. Let v ∈ ∆m andQ ∈ Sm, then v is a strict local maximizer of
(StQP ) if and only if v is an ESS with respect toQ.

Proof. ⇒ Let v be a strict local maximizer. Wewill show that v is an ESS. In order
to prove this irst note that∆m is convex and for any u ∈ ∆m, u ̸= v and λ > 0
small the following holds forw = v+ λ(u− v),

0 < vTQv−wTQw = 2λ(vTQv− vTQu)− λ2(u− v)TQ(u− v)
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= λ(2− λ)(vTQv− vTQu) + λ2(uTQv− uTQu) (3.26)

Then by dividing this expression by λ > 0 and taking λ → 0we get

vTQv− vTQu ≥ 0.

If vTQv− vTQu = 0 then from (3.26) we get uTQu− uTQv < 0. Hence v is an
ESS.
⇐ Let v be an ESS wewill prove that v is a local maximizer. In order to show this
take anyw ̸= v near v,w ∈ ∆m. We can ind a u ∈ ∆m, u ̸= v and (small) λ > 0
such thatw := v+ λ(u− v) ∈ ∆m. Now consider,

vTQv−wTQw = λ(2− λ) (vTQv− vTQu)︸ ︷︷ ︸
≥0

+λ2 (uTQv− uTQu)︸ ︷︷ ︸
>0 if vTQv− vTQu = 0

> 0

The above inequality holds due to the conditions of ESS.

In the proposition above we have seen that an ESS for symmetric matrices is
equivalent to a strict local maximizer of (StQP ). In the case of nonsymmetric
matrices neither direction holds meaning that if v is an ESS, we cannot say if it
is a strict local maximizer and also if v is a strict local maximizer we cannot say
that it is an ESS. Consider the following example,

Example 3.25. Let

Q :=

(
1 1
3 1

2

)
First we claim that v :=

(
1
5 ,

4
5

)T ∈ ∆2 is an ESS. In order to see this take u :=

(u1, 1− u1)
T ∈ ∆2. Then it is not dif icult to verify the following,

vTQv = uTQv = 1, vTQu =
3

5
+ 2u1, uTQu = 3u1 +

1

2
− 5

2
u21 .

From this we get, vTQu − uTQu = 5
2

(
u1 − 1

5

)2
> 0 for all u1 ̸= v1. Hence

v is an ESS. But v is not a strict local maximizer since for ε > 0 very small take
w := v+ ε (e1 − v) = 1

5(1 + 4ε, 4− 4ε)T then we have

vTQv−wTQw = 1−
(
1 +

8

5
ε (1− ε)

)
= −8

5
ε (1− ε) < 0 .

Now consider ṽ :=
(
3
5 ,

2
5

)T . Then it can be readily veri ied that ṽ is not an ESS. We
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will show that ṽ is a strict local maximizer. For 0 < λ < 1 and u ∈ ∆2 we have,

w := ṽ+ λ (u− ṽ) =
(
3

5
+ λ

(
u1 −

3

5

)
,
2

5
+ λ

(
3

5
− u1

))
.

Then we have,

ṽTQṽ−wTQw =
7

5
−

(
7

5
− 5

2
λ2

(
u1 −

3

5

)2
)

=
5

2
λ2

(
u1 −

3

5

)2

.

Clearly the above expression is positive for all u1 ̸= 3
5 . Hence ṽ is a strict local

maximizer.

An interesting property of ESS, as observed by Bishop and Cannings [14], is
that if we add a constant to the columns of a matrix then the original and the
resulting matrix have the same set of ESS.

Lemma 3.26. Let A ∈ Rm×m and ai are the columns of A. De ine the matrix B
with columns bi = ai + αie, where αi ∈ R. Then v is an ESS ofA if and only if v is
an ESS ofB.

Proof. Let u, v ∈ ∆m and α = (α1, α2, ..., αm)T ∈ Rm. First note that uTB =
uTA+ αT . Then

uTBv = uTAv+ αTv, vTBv = vTAv+ αTv

and

vTBv− uTBv = vTAv+ αTv− uTAv− αTv = vTAv− uTAv

Note that vTBv = uTBv if and only if vTAv = uTAv. The second condition of
ESS can be shown to hold in a similar way.

For the case of symmetric matrices the above result is not useful in the sense
that adding a different constant to each column may result in a matrix which is
no more symmetric. So the following corollary is more useful in the case of
symmetric matrices.

Corollary 3.27. Let α ∈ R, then v ∈ ∆m is an ESS ofA ∈ Sm if and only if v is an
ESS ofA+ αeeT .

Proof. Follows immediately from Lemma 3.26.
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3.4.1 Existence of ESS

In this subsection we will discuss necessary conditions for the existence of an
ESS. We shall show that there exist matrices with no ESS, moreover every
nonsingular 2× 2matrix has at least one ESS. We start the existence analysis of
ESS with the following necessary conditions initially formulated by Haigh [79].
First we de ine the set,

S(v) :=
{
i : (Qv)i = max

j
(Qv)j

}
.

Lemma 3.28. ([79, Theorem 3]). LetQ ∈ Rm×m and let v ∈ ∆m be an ESS with
respect toQ, then

(Qv)i = max
j

(Qv)j ∀ i ∈ R(v) ``or equivalently'' R(v) ⊆ S(v), (3.27)

whereR(v) denotes the support of the vector v (cf. (3.2)).

Proof. We suppose to the contrary, that there exists j ∈ R(v) such that, s :=
maxi(Qv)i > (Qv)j . Then for u ∈ ∆m with R(u) ⊆ S(v) it follows uTQv =∑

ui(Qv)i = s and

vTQv = vj(Qv)j +
∑
i̸=j

vi(Qv)i <
∑
i

vis = s = uTQv

leading to a contradiction that v is an ESS.

It can be readily veri ied that for Q ∈ Sm the necessary conditions given in the
above lemma are equivalent to the KKT conditions (3.1). This can be shown by
taking λ = maxj (Qv)j where λ is Lagrange multiplier in (3.1). From this
observation and for the same value of λ we can also conclude that the set S̃(v)
(see (3.3)) is equal to S(v), i.e., S(v) = S̃(v).

Remark 3.29. It is interesting to note that if v is an ESS with respect to the matrix
Q, then equality in the irst condition of ESS precisely occurs for those u ∈ ∆m for
whichR(u) ⊂ S(v). This follows from Lemma 3.28. To see this let s = maxj(Qv)j .
Then (3.27) implies vTQv = s. Moreover (Qv)i < s for all i /∈ S(v), and ifR(u) ̸⊂
S(v) then

uTQv = s
∑

i∈S(v)

ui +
∑

i/∈S(v)

ui(Qv)i
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< s
∑

i∈S(v)

ui + s
∑

i/∈S(v)

ui = s = vTQv

so in the caseR(u) ̸⊂ S(v), we always get strict inequality in the irst condition of
ESS.

In the following lemma we give suf icient conditions for the existence of an
ESS for a matrix Q.

Lemma 3.30 ([79]). Let Q ∈ Rm×m. If for i it holds that qii > qji for all j ̸= i
then ei is an ESS ofQ.

Proof. First note thatQeiwill give the ith column of thematrixQ and foru ∈ ∆m

consider,

uTQei = q1iu1 + . . .+ qiiui + . . .+ qmium

< qii(u1 + u2 + . . .+ um) = qii = eTi Qei .

Hence ei is an ESS.

As mentioned before, for every nonsingular 2× 2matrix there exists an ESS.

Lemma 3.31 ([79]). Every nonsingular 2× 2matrix has at least one ESS.

Proof. Let
Q =

(
q11 q12
q21 q22

)
.

Now if q11 > q21 or q22 > q12, then there is an ESS due to Lemma 3.30. Now
suppose that q11 ≤ q21 and q22 ≤ q12, in this case it can be readily veri ied that
v := (v1, 1− v1) is an ESS with,

v1 :=
q22 − q12

q12 + q21 − q11 − q22
.

The denominator in the above expression can only be zerowhen q11 = q21, q22 =
q12, which corresponds to a singular matrix.

It is claimed by Vickers and Cannings [151, page 389] that every nonsingular
symmetricmatrix has an ESS. A proof of the claim is not given. As amatter of fact
the example given below, with a nonsingular matrix without an ESS, provides a
counter example to the claim.
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Example 3.32. Consider the nonsingular matrix

A =

2 2 1
2 2 1
1 1 −2

 .

In order to show that thematrixA does not have an ESS irst note that v := (v1, 1−
v1, 0) ∈ ∆m cannot be an ESS since vTAv = 2 for all 0 ≤ v1 ≤ 1. Moreover
v := (v1, v2, 1 − v1 − v2) ∈ ∆m with 0 ≤ v1 + v2 < 1 cannot be an ESS. In order
to see this consider

Av =

(
1+v1+v2
1+v1+v2

3v1+3v2−2

)
and note that if v is an ESS then from Lemma 3.28 we should have, 1 + v1 + v2 =
3v1 + 3v2 − 2 implying v1 + v2 =

3
2 , which is a clear contradiction.

However the following is true,

Corollary 3.33. LetQ ∈ Sm be such that each principle submatrix is nonsingular.
ThenQ has an ESS.

Proof. It is clear from Proposition 3.24 that an ESS corresponds to a strict local
maximizer. Assume that the global maximizer is not a strict local maximizer.
Choose such a global maximizer v on rint(fcR(v)) with maximal support R(v).
Then v is not a strict local maximizer on fcR(v) and by Theorem 3.13 we have
det(QR(v)) = 0, which is a contradiction.

3.4.2 Patterns of ESS

In this subsection we shall give a brief survey of results related to the patterns
of ESS. A pattern, roughly speaking, is a set of supports of ESS. In this
subsection results on the patterns are provided for which it is known that they
cannot exist. A complete enumeration of patterns for a matrix of order up to
four is also presented.

De inition3.34 (Pattern of ESS). A patternP is a set of distinct subsets of the set
U := {1, . . . ,m}. We call a pattern attainable if there exists a matrixQ ∈ Rm×m

with ESS whose support corresponds to each of the subsets of U present in the
pattern. An attainable pattern P is called maximal if there is no P ∗ ⊃ P which
is attainable.

More speci ically a pattern is a set P = {P1, P2, . . . , Pk} such that Pi ⊂ U and
Pi ̸= Pj for all i ̸= j = 1, . . . , k. We call P an attainable pattern if there exists a
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matrixQwith k ESS namely v1, v2, ..., vk whose set of supports is R(v1), R(v2),
..., R(vk) such that for each i, R(vi) = Pi. In this subsection we shall use P to
denote the pattern. For example P = {(1, 2, 3), (3, 4), (1, 3, 5, 6)} means that
the pattern consist of three subsets of U with set of supports {1, 2, 3}, {3, 4}
and {1, 3, 5, 6}.
The following is a well known conjecture concerning the attainable patterns.

Conjecture 3.35 ([151]). Let P be an attainable pattern and P ∗ ⊂ P then P ∗ is
also attainable.

A weaker result is proven by Broom [34]. The conjecture is useful when it is
required to ind a complete list of attainable patterns. It isworthmentioning that
there exists some patterns which are not attainable by symmetric matrices. The
pattern P := {(1, 2), (1, 3), (2, 3, 4), (3, 5), (4, 5)} is attained by a nonsymmetric
matrix but it is not attainable by any 5 × 5 symmetric matrix [43, page. 197].
For the matrices of order 2,3,4, a complete list of attainable patterns is known
and is discussed by Vickers and Cannings in a series of papers [42, 43, 151]. The
description is based on some exclusion results stated and proven by Vickers and
Canning. Here we will enlist these exclusion results starting with a simple result
of Bishop and Cannings [15],

Lemma 3.36 ([15]). Let Q ∈ Rm×m and let v,u ∈ ∆m be two ESS with respect
toQ, then

R(v) ̸⊆ S(u) and R(u) ̸⊆ S(v)

Proof. Let us suppose to the contrary thatR(v) ⊆ S(u). Since u ∈ ∆m is an ESS
we have uTQu ≥ vTQu, and due to the arguments given in Remark 3.29 only the
equality is possible (i.e. uTQu = vTQu), in which case we get uTQv > vTQv,
which contradicts v being an ESS.

The immediate consequence of the above lemma is that it excludes the possibility
for the existence of two ESS such that the support of one is contained in the other.
Another consequence of the above result is that, if there exists an ESS v ∈ ∆m

such that |R(v)| = m, then it is unique.
Now we turn our attention to the exclusion results related to certain patterns.

We start this discussion with matrices of size 3. Lemma 3.37 says that for a 3× 3

matrix there cannot exists three ESS of support size two, simultaneously.

Lemma 3.37. LetQ ∈ R3×3, then P := {(1, 2), (2, 3), (1, 3)} is not attainable.
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Proof. See [151].

In the following theorem we will enlist all patterns which are known to be not
possible.

Theorem 3.38. LetQ ∈ Rm×m, then the following patterns are not attainable,

i. with S ⊆ U\{1, 2, 3}, P := {(1, 2, S), (2, 3, S), (1, 3, S)}

ii. with S ⊆ U\{1, 2, ..., k},
P := {(1, k, S), (2, k, S), ..., (k − 1, k, S), (1, 2, ..., k − 1, S)}

iii. with S ⊆ U\{1, 2, ..., k}, P := {(1, S), (2, S), ..., (k, S), (1, 2, ..., k)}

iv. with k < m, P := {(1, k+1, k+2, · · · ,m), (2, 3, · · · , k, k+1, k+2, · · · ,m),
(1, 2), (1, 3), · · · , (1, k)}

Proof. Part i.,ii. and iii. are proven in [151] while part iv. is proven in [41,
Theorem 6].

By applying the above exclusion results, Vicker and Cannings [151] have
provided a complete list of maximal patterns for matrices of order up to 4. For
matrices of order 5 a partial list is provided. In the following theorem the
maximal attainable patterns for matrices of order up to four are enlisted. For
examples showing the attainability, the interested reader is referred to [151].

Theorem 3.39. For m = 2, 3, 4 the following is the complete list of maximal
patterns which are attainable,

m = 2 : {(1, 2)}, {(1), (2)}
m = 3 : {(1, 2, 3)}, {(1, 2), (1, 3)}, {(1, 2), (3)}, {(1), (2), (3)}
m = 4 : {(1, 2, 3, 4)}, {(1, 2, 3), (1, 2, 4)}, {(1, 2, 3), (2, 4), (3, 4)}, {(1, 2, 3), (4)},

{(1, 2), (1, 3), (1, 4)}, {(1, 2), (2, 3), (3, 4), (1, 4)}, {(1, 2), (1, 3), (4)},
{(1, 2), (3), (4)}, {(1), (2), (3), (4)}

The description of the maximal attainable patterns given in the above
theorem is minimal in a sense that when we write {(1, 2), (1, 3)} is attainable
then any permutation is also attainable, i.e., {(1, 2), (2, 3)},{(2, 3), (1, 3)} are
also attainable.
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3.4.3 ESS in {0,±1} Matrices

In this subsection the existence of ESS in a special class of matrices is discussed.
The matrix class is denoted by M,

M := {Q ∈ Sm : qij = ±1, qii = 0}.

To each Q ∈ M one can associate a graph G = (V, E) with the set of vertices
V = {1, 2, ...,m} and the set of edges E such that {i, j} ∈ E if and only if qij = 1.
For these matrices and the corresponding graph, an ESS can be characterized by
the maximal clique property.
De inition 3.40 (Maximal Clique). Let V be the set of vertices in the graph G.
A subset V ⊆ V is called a clique if every pair of vertices in V is connected by
an edge. A clique is called maximal if it is not properly contained in some other
clique.

The following results have appeared in [42]. For the sake of completeness,
here, we include the proof of the theorem,
Theorem 3.41 ([42]). Let Q ∈ M. Then there is an ESS (say v) with support
S := R(v) if and only if S forms a maximal clique in the corresponding graphG.

Proof. Let us suppose that S ⊂ U is a maximal clique in G. We de ine v ∈ ∆m

such that,

vi =

{
1
|S| if i ∈ S

0 otherwise

Now it is suf icient to prove that v is a strict local maximizer. Let u ∈ ∆m with
u ̸= v. Considering the convex combination, w := v + λ(u − v) ∈ ∆m, then v
is a strict local maximizer if and only if, for all such u ∈ ∆m and λ > 0 small the
following holds,

wTQw− vTQv = 2λvTQ(u− v) + λ2(u− v)TQ(u− v) < 0 (3.28)

First note that for the case R(u) ̸⊂ S we have vTQv > uTQv. In order to see
this observe that theprinciple submatrixQS corresponding toS doesnot contain
negative entries so we have (Qv)i = 1

|S|(|S| − 1) for all i ∈ S. Moreover since S
forms a maximal clique, for all i /∈ S it follows that (Qv)i < 1

|S|(|S| − 1), which
results in

uTQv =
∑
i∈S

(Qv)iui +
∑
i̸∈S

(Qv)iui
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=
1

|S|
(|S| − 1)

∑
i∈S

ui +
∑
i̸∈S

(Qv)iui

<
1

|S|
(|S| − 1) = vTQv .

Now consider the case R(u) ⊂ S. Then QS = E − I where E is the |S| × |S|
matrix consisting of all ones while I is the identity matrix of order |S|. Observe
also that for v the following holds,

vTQ(u− v) =
1

|S|
eTSQS(uS − 1

|S|
eS) =

1

|S|
eTS (E − I)(uS − 1

|S|
eS)

=
1

|S|
eTS (EuS − 1

|S|
EeS − IuS +

1

|S|
IeS)

=
1

|S|
eTS (eSeTSuS − |S|

|S|
eS − uS +

1

|S|
eS)

=
1

|S|
eTS (eS − eS − uS +

1

|S|
eS) since eTu = 1

=
1

|S|
(−eTSuS +

1

|S|
eTSeS) = 0 (3.29)

where eS ∈ R|S|
+ is the vector of all ones.

SinceR(u) ⊂ S for o ̸= w = u− v it holds wi = 0 for all i /∈ S. So

wTQw =
∑
i,j∈S
i̸=j

qijwiwj +
∑
i,j /∈S
i̸=j

qijwiwj

=
∑
i,j∈S
i̸=j

qijwiwj =
∑
i,j∈S
i̸=j

wiwj

=

(∑
i∈S

wi

)2

−
∑
i∈S

w2
i

 = −
∑
i∈S

w2
i < 0. (3.30)

The last equality follows since eTw = 0. So the inequality in (3.28) follows
from (3.29) and (3.30).
For the converse let v be an ESS with support R(v). If R(v) does not form a

maximal clique in the corresponding graph then there may occur two
possibilities

i. R(v) forms a clique but not a maximal clique. In this case there exists some
S ⊂ U such thatR(v) ⊂ S where S forms a maximal clique in the graphG.
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ii. R(v) does not forma clique at all, meaning that there exists some i, j ∈ R(v)
such that qij = −1. In this case there exists some S ⊂ R(v), such that S
forms a maximal clique in the corresponding graph.

Now from the irst part of the theorem, S corresponds to the support of some
ESS u. Since v is an ESS and the support R(v) is either contained in S or it is
containing S, we obtain a contradiction to Lemma 3.36.

Interestingly all patterns given in Theorem 3.39 are attainable by matrices from
the classMwith the exception of the pattern {(1, 2, 3), (2, 4), (3, 4)} (for details
see [43, page 196]).

Remark 3.42. The result of Theorem 3.41 can be generalized to matrices with
elements from {α, β, γ} such that α < β < γ, with β on the main diagonal. For
these matrices the graphG := (V, E) can be associated with V = U and {i, j} ∈ E
if and only if qij = γ.

3.4.4 Number of ESS

In this subsection the question of the maximum number of ESS which can
coexists in a matrix Q ∈ Rm×m is discussed. The subsection starts with a well
known lemma from combinatorics which is helpful to obtain a bound on the
maximum number of ESS. The bound for the special case of the matrix classM
is also provided with an example proving that the bound is sharp. We will also
state results for ESS with speci ic support size.

Lemma 3.43 (Sperner's Lemma). Let S be a Sperner set of subsets of U := {1,
. . . ,m} (i.e. for A,B ∈ S, if A ̸= B, then A ̸⊂ B andB ̸⊂ A). Then |S| ≤

(
m

⌊ 1
2
m⌋
)
,

where for a ∈ R+, ⌊a⌋ gives the largest integer less then or equal to a.

Proof. See e.g. [36].

In view of Sperner's Lemma and Lemma 3.36 a bound on the maximum number
of ESS becomes apparent. For sake of completeness, the bound is provided in
the following proposition,

Proposition 3.44. LetQ ∈ Rm×m. ThenQ can have at most
( m
⌊m

2 ⌋
)
ESS.

Proof. Let w1, · · · ,wN be ESS. Then from Lemma 3.36 we get R(wi) ̸⊂ R(wj)
for all i ̸= j, i, j = 1, · · · , N . By Sperner's Lemma the maximum number of
R(wj)'s in U such that no one is contained in some other is given by

( m
⌊m

2 ⌋
)
.
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Remark 3.45. FromTheorem 3.39 it can be concluded that the bound given above
is not sharp for the matrices of order 4.

Proposition 3.44 provides a bound on the maximum number of ESS that may
coexists forQ ∈ Rm×m. For the class ofmatricesM the upper bound is different
and achievable as is shown in the following lemma and example.

Lemma 3.46 ([42]). Let Q ∈ M. If m ≥ 4 and m = r + 3s, where r = 2, 3, 4,
then the greatest number of ESS that can coexist inQ is r3s.

Proof. Due to Lemma 3.41 the support of each ESS corresponds to a maximal
clique in the associated graphG. The maximum number of maximal cliques in a
graph associatedwithQ is boundedby r3s by the result ofMoonandMoser [113].

The following example shows that the bound given in Lemma 3.46 is tight.

Example 3.47. Consider the matrixQ ∈ Sm,m = 3n, n ≥ 2

Q =


I − E E · · · E

E I − E · · · E
...

... . . . ...
E E · · · I −E


where E is the 3× 3matrix of all ones and I is the 3× 3 identity matrix. De ine n
sets S1, S2, · · · , Sn such that Si := {1 + 3(i− 1), 2 + 3(i− 1), 3 + 3(i− 1)} with
i = 1, · · · , n and P := {S1 × S2 × · · · × Sn}. Now for any S ∈ P we have

(QS)i,j :=

{
0 i = j

1 otherwise

i.e., S forms a (maximal) clique in the corresponding graph, so each S ∈ P is
associated with an ESS, and there will be in total |P | = 3n of them. Now de ine (as
we did in Theorem 3.41),

vi :=

{
1
|S| i ∈ S

0 otherwise

then vTQv = |S|−1
|S| = 1− 1

n will be the value of each ESS.
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Number of ESS with Fixed Support

In the literature, instead of giving sharp bounds on themaximum number of ESS
much emphasis is given on the number of ESS with speci ic support size. Note
that sharper bounds for each support size then lead to sharper bounds for the
maximumnumber of ESS. In the context of (StQP ) this gives the number of strict
local maximizers on a face of ∆m of a certain dimension.
Let us denote by um(r) the maximum number of ESS for Q ∈ Rm×m with

support of length rwith equality usedwhen it is known that the bounddescribed
is tight. In the following theorem all known results for um(r) are summarized,

Theorem 3.48. LetQ ∈ Rm×m then,

i. um(2) =
⌊
1
4m

2
⌋

ii. um(3) ≤
⌊
m3−3m2+6m−13

13

⌋
iii. um(m− 1) = 2

iv. um(m− 2) = m

v. um(m− 3) ≤
⌊
1
3m(m− 1)

⌋
Proof. See [34].

3.4.5 ESS in Random Matrices

It is shown in the previous subsections that a matrix can have many ESS, as well
as, that there exist matrices with no ESS. This situation leads one to think in
probabilistic terms, meaning one might think about the probability for a given
matrix to have an ESS? The question has been analysed for randomly generated
symmetric and nonsymmetric matrices. Here we will brie ly summarise these
results.
The question of existence of ESS in randomly generated matrices is dealt

indirectly. Instead of analysing the existence of ESS the attention is given to the
question of existence of ESS with certain support size. The irst result in this
direction is obtained for the ESS of support size one. It has been shown that the
probability for the existence of an ESS of support size one goes to 1 − 1

e as the
size of the matrix goes to in inity [80, 102]. Here it is worth mentioning that the
result is independent of the distribution used for generating the elements of the



68 3.5. VECTOR ITERATIONS

matrix. The only other case analysed is for the support of size two. In this case
the distribution for the generation of elements of the matrix play an important
role since the results are dependent on the distribution. Hart et al. [85] have
shown that if the elements of the matrix Q ∈ Rm×m are generated using a
distribution F then,

• for distributions Fwith ``exponential and faster decreasing tails'' (e.g. uniform,
normal, exponential), we have

lim
m→∞

Pr(∃ ESS with support size = 2) = 1

• for distributions F with ``slower than exponential decreasing tails'' (e.g.
lognormal, Pareto, Cauchy) we have

lim
m→∞

Pr(∃ ESS with support size = 2) = 1− 1√
e

Kingman [102] analysed the question of support size in large randomly
generated symmetric matrices. He has shown that for symmetric matrices
whose elements are drawn randomly using the uniform distribution, the
probability of existence of an ESS with support size greater than or equal to
2.49m

1
2 goes to zero as m goes to in inity [81, 102]. Here the bound is in

dependence of the probability distribution used. Haigh [80] extended the work
of Kingman by proving a similar result for nonsymmetric matrices. For the case
of nonsymmetric matrices the probability of the existence of an ESS with
support size greater than 1.63m

2
3 goes to zero asm goes to in inity.

Less attention has been given to the question of inding bounds on the number
of ESS in randomly generatedmatrices. The only result known is for the number
of ESSwith support size two. It is shown that the number of ESSwith suport size
two goes to 1

3 log(
m
2 ) as m goes to in inity[81].

3.5 Vector Iterations

In this section we consider vector iterations for solving (StQP ). We will also
discuss a similar well-known algorithm to solve a similar program. We start
with a special program which is used for inding the maximum eigenvalue of a
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matrix Q ∈ Sm.

(E-Max) max vTQv s.t. ∥v∥ = 1, v ∈ Rm,

where, as usual, ∥.∥ denotes the Euclidean norm. Here without loss of generality
we assume that Q is positive de inite i.e. Q ∈ S++

m , since Q and Q + αI, α ∈ R,
(E-Max)will have the same maximizers. A solution of the above program gives
the eigen vector corresponding to the maximum eigenvalue of the matrixQ (for
details see e.g. [67, Section 4.8]). Although (E-Max) is a special instance of a
quadratic program it is well known to be polynomial time solvable since it can
be reformulated as a semide inite programming problem. In fact (E-Max) can
be used as a feasibility test for semide inite programming problems.
The powermethod is awell knownmethod for solving (E-Max) (see e.g. [75]).

The powermethod startswith an initial vector v(0)with ∥v(0)∥ = 1, and iterates:

v(t+ 1) :=
Qv(t)

∥Qv(t)∥
(3.31)

λt+1 := v(t+ 1)TQv(t+ 1) t = 0, 1, . . . . (3.32)

Here t is the variable for the iteration. The power iteration is guaranteed to
converge under the conditions that the matrix Q has a unique dominating
(positive) eigenvalue and the initial vector does not have a nonzero component
in the direction of the eigenvector associated with the dominating eigenvalue.
Here by dominating eigenvalue we mean the eigenvalue with the largest
absolute value.
In the following theorem we will show that the iteration (3.32) is

monotonically increasing for positive de inite matrices. The proof is based on
an unpublished manuscript [135].
Theorem 3.49. LetQ ∈ S++

m , then λt ≤ λt+1.

Proof. First observe that v(t) can be written as follows,

v(t) :=
Qtv(0)
∥Qtv(0)∥

.

Then λt can be written as,

λt :=
v(0)TQ2t+1v(0)

∥Qtv(0)∥2
(3.33)
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For the sake of clarity in the proof we will use v instead of v(0). By de ining
sk := vTQkv, (3.33) can be written as λt = s2t+1

s2t
. Note also that sk > 0 holds

sinceQ ∈ S++
m . So in order to prove the theorem we will show the following:

s2t+1

s2t
≤ s2t+3

s2t+2
(3.34)

From L1 := ∥s2t+1Q
tv− s2tQ

t+1v∥2 we get,

0 ≤ L1 = ∥s2t+1Q
tv− s2tQ

t+1v∥2

= (s2t+1Q
tv− s2tQ

t+1v)T (s2t+1Q
tv− s2tQ

t+1v)
= s22t+1vTQ2tv− 2s2t+1s2tvTQ2t+1v+ s22tvTQ2t+2v
= s22t+1s2t − 2s22t+1s2t + s22ts2t+2

= s2t+2s
2
2t − s22t+1s2t (3.35)

Divide (3.35) by s22ts2t+1 to obtain,
s2t+1

s2t
≤ s2t+2

s2t+1
(3.36)

NowconsiderL2 := ⟨s2t+3Q
t+1v−s2t+2Q

t+2v, s2t+3Q
tv−s2t+2Q

t+1v⟩ andnote
that L2 ≥ 0 sinceQ ∈ S++

m , then we have the following,

0 ≤ L2 = s22t+3s2t+1 − 2s22t+2s2t+3 + s22t+2s2t+3

= s2t+1s
2
2t+3 − s22t+2s2t+3 (3.37)

Divide (3.37) by s2t+1s2t+2s2t+3 to obtain,
s2t+2

s2t+1
≤ s2t+3

s2t+2
(3.38)

Combining (3.36), (3.38) we ind (3.34).

We consider a similar iteration which can be associated (as we will see) with
(StQP ). Start with v(0) ∈ ∆m and iterate:

vi(t+ 1) = vi(t)
[Qv(t)]i

v(t)TQv(t)
i ∈ U := {1, 2, . . . ,m}, t = 0, 1, . . . . (3.39)

Throughout this section thematrixQ ∈ Sm is assumed to be positive, since from
Corollary 3.27 it is clear thatQ andQ+αE have the same strict localmaximizers.
A point v = v(t) is said to be a ixed point of (3.39) if v(t + 1) = v(t) holds
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in (3.39). It is not dif icult to verify that the solution of the following system of
equations gives the set of all ixed points of (3.39),

vi[[Qv]i − vTQv] = 0, ∀ i ∈ U . (3.40)

Remark 3.50. It is worth mentioning that the iteration (3.39) has a nice
interpretation in theoretical biology and population genetics which goes as
follows (see e.g. [119, 147]). Consider an in inite population of the same species
contesting for a particular limited resource. If we take randomly chosen members
of the population as players then this kind of con licts can be modelled as a game,
where each player acts according to a pre programmed behaviour termed as pure
strategy. As usual let U denote all pure strategies and let vi(t) be the relative
frequency of the members of the population playing strategy i, at time t. Then the
vector v(t) = (v1(t), · · · , vm(t))T will denote the state of the system at time t. We
further assume that the sum of relative frequencies is one, i.e., v(t) ∈ ∆m. If we
denote the advantage or payoff for a user of strategy i whose opponent is playing
strategy j by qij then the complete set of payoffs are denoted by a matrix
Q = (qij). In this context the average payoff for the user of strategy i will be
eiQv = (Qv)i [119, 147]. In theoretical biology iterations (3.39) are known as
replicator dynamics while in population genetics they are called selection
equations.

Here, from a mathematical point of view, we are interested to know if the
iteration (3.39) has some monotonicity properties, and whether starting with
an initial point the iteration converges to a strict local maximizer of (StQP ) or
not. The answer to the irst question is positive. In the literature there exists
many proofs for the monotonicity of the iteration (3.39). Here we will
reproduce the elegant proof of Kingman [103]. Before the proof we provide
some auxiliary results.

Lemma 3.51 (Jensen Inequality). Let f be a convex function on a convex set S ⊆
R. Then for all λi ≥ 0, ui ∈ S, i = 1, . . . , N , with

∑N
i=1 λi = 1 forN ∈ Nwe have,

f

(
N∑
i=1

λiui

)
≤

N∑
i=1

λif (ui)

Equality holds if and only if either f is linear or u1 = u2 = · · · = uN .

Proof. See e.g. [134].
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If we take f(u) = ul, u ∈ R+, l ≥ 0 in the Jensen inequality, then we obtain,[
N∑
i=1

λiui

]l
≤

N∑
i=1

λi(ui)
l (3.41)

As mentioned before, for l > 1 equality in (3.41) is possible if and only if u1 =

u2 = · · · = uN . Note also that for a, b ≥ 0 we have,

a+ b

2
≥

√
ab (3.42)

Theorem 3.52. Let Q ∈ Sm be positive and let v(t) ∈ ∆m not be a ixed point.
Then

v(t+ 1)TQv(t+ 1) > v(t)TQv(t).

Proof. First observe that,

v(t+ 1)Qv(t+ 1) =
∑
i,j

vi(t+ 1)vj(t+ 1)qij

=
∑
i,j

vi(t)
[Qv(t)]i

v(t)TQv(t)
vj(t)

[Qv(t)]j
v(t)TQv(t)

qij

=
1

[v(t)TQv(t)]2
∑
i,j

vi(t)vj(t)[Qv(t)]i[Qv(t)]jqij

In view of the above observation it is suf icient to prove:∑
i,j

vi(t)vj(t)[Qv(t)]i[Qv(t)]jqij > [v(t)TQv(t)]3

For the sake of clarity we will use v instead of v(t) in the rest of the proof. Take
L :=

∑
i,j vivj [Qv]i[Qv]jqij and note that [Qv]i =

∑
k qikvk . Then we have,

L =
∑
i,j,k

vivjvk[Qv]jqijqik

By interchanging j with k we obtain the following two equivalent forms of L,

L =
∑
i,j,k

vivjvk[Qv]jqijqik =
∑
i,j,k

vivjvk[Qv]kqijqik
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Now adding the two expressions for Lwe get,

L =
∑
i,j,k

vivjvk
1

2
([Qv]j + [Qv]k)qijqik

≥
∑
i,j,k

vivjvk([Qv]j [Qv]k)
1
2 qijqik using (3.42)

=
∑
i

vi

∑
j,k

vjvk([Qv]j [Qv]k)
1
2 qijqik


=
∑
i

vi

∑
j

vj([Qv]j)
1
2 qij

2

≥

∑
i

vi
∑
j

vj([Qv]j)
1
2 qij

2

Using (3.41) with l = 2 (3.43)

=

∑
j

vj([Qv]j)
1
2

[∑
i

viqij

]2

=

∑
j

vj([Qv]j)
3
2

2

>


∑

j

vj [Qv]j

 3
2


2

Using (3.41) with l = 3/2 (3.44)

=

∑
j

vj([Qv]j)

3

=
[
vTQv

]3
Here we would like to emphasize that the inequality (3.44) is strict. In order to
see this, assume that equality holds. Then (in view of Lemma 3.51) for all vj > 0
we have [Qv]j = α giving that:∑

j

vj([Qv]j)
3
2

2

=

∑
j

vj(α)
3
2

2

=

α 3
2

∑
j

vj

2

= α3,



74 3.6. GENERICITY

where we have used v ∈ ∆m. So, also

α3 =

∑
j

vj([Qv]j)
3
2

2

=

∑
j

vj([Qv]j)

3

= (vTQv)3 .

Hence, we have α = vTQv and thus [Qv]j = vTQv = α for all vj > 0. This
contradicts the assumption that v is not a ixed point.
For alternative proofs see [22, 116, 137].

From the results of Losert and Akin [109] it follows that the iterations (3.39)
will converge to a ixed point. Now the question arises if the iteration converges
to a strict local maximizer or an ESS. The answer to this question is negative,
since there exist matrices with no strict local maximizers. So it is clear that
starting with some initial point the iteration may not converge to a strict local
maximizer. Now the following question arises. Let the initial point v(0) of the
iteration be very close to an ESS (say v). Will then the iteration converge to v?
The answer to this question is positive.

Theorem 3.53. Let Q ∈ Sm be positive and let v ∈ ∆m be an ESS. Then there
exists ε > 0 such that for all v(0) satisfying ∥v(0) − v∥ ≤ ε we have v(t) → v as
t → ∞.

Proof. See [22, Theorem 3].

3.6 Genericity

In this section we will discuss so called genericity results for (StQP ). First we
will specify what is exactly meant by genericity.

De inition 3.54. We say that a property is generic in the problem set Sm, if the
property holds for a (generic) subsetQr of Sm such thatQr is open and Sm\Qr

has (Lebesgue) measure zero.(So genericity implies density and stability of the
setQr of ``nice'' problem instances).

First consider the following lemma required in the proof of the next theorem,

Lemma 3.55. Let p : Rk → R be a polynomial mapping, p ̸= 0. Then the set of
zeros of p, p−1(0) = {v ∈ Rk : p(v) = 0}, has (Lebesgue) measure zero (in Rk).

Proof. See e.g. [16, Lemma 2.8].
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In the next theorem we show that generically any local maximizer v of (StQP )

is a strict local maximizer, i.e., an ESS that furthermore satis iesR(v) = S(v).
Theorem 3.56. There is a generic subsetQr ⊂ Sm such that for anyQ ∈ Qr the
following holds: For any v ∈ ∆m such that v is a local maximizer we have,

i. R(v) = S(v)

ii. v is a strict local maximizer

Proof. i. Since v is a local maximizer, from the KKT conditions it follows that
R(v) ⊆ S(v). Suppose that this inclusion is strict i.e. R(v) ̸= S(v). Then there
exists some j ∈ S(v)\R(v). Thismeans thatwithR := R(v) the point vR ∈ R|R|

++

solves the system of linear equations,(
QR

qj,R

)
vR = λ

(
eR
1

)
with λ := max

i
(Qv)i (3.45)

where qj,R := (qj,l, l ∈ R). This implies that the determinant of the (|R| + 1) ×
(|R|+ 1)matrix

(
QR eR
qj,R 1

)
is zero.

Consider now the polynomial function p(Q, qj,R) := det
(

QR eR
qj,R 1

)
. Since p(IR,

0) = 1 this function is nonzero and according to Lemma 3.55 for almost allQR,
qj,R ∈ R|R|×(|R|+1) the relation p(QR, qj,R) ̸= 0 holds, i.e., there is no solution of
the equation (3.45). Moreover since the function p(QR, qj,R) is continuous the
set of parameters (QR, qj,R) with p(QR, qj,R) ̸= 0 is open. Since there is only
a inite selection of subsets R ⊂ U and elements j /∈ R possible, also the set of
parametersQ such that for allR, j the condition p(QR, qj,R) ̸= 0 holds is generic.

ii. Now suppose that a local maximizer v (by the above analysis we can assume
R(v) = S(v)) is not a strict local maximizer. Then in view of Corollary 3.14 we
have, det(QR(v)) = 0. But by de ining the non-zero polynomial
p(Q) := det(QR(v)) and using Lemma 3.55 the conditions det(QR(v)) = 0 can
be excluded for almost allQ. By noticing that also the condition det(QR(v)) ̸= 0
is stable with respect to small perturbations of Q the condition det(QR(v)) = 0
is generically excluded.

The above theorem immediately implies that generically every symmetric
matrix has an ESS, i.e. :
Corollary 3.57. The set {A ∈ Sm : A has an ESS} contains a generic subset.

Proof. For every matrix A, (StQP ) has a global maximizer. By Theorem 3.56
generically it is an ESS.
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4
Nonconvex Quadratic Programming1

Z into the intersection of convex and nonlinear
programming problems we study a list of problems which are

originally nonconvex but by the use of relaxation techniques these
programs are reformulated (approximately) as convex
programming problems. In this chapter we investigate how sharp
the set-semide inite relaxations of nonconvex quadratic programs
are.

4.1 Introduction

As mentioned before it is common to solve/approximate programs with binary
or general quadratic constraints by considering their semide inite or copositive
programming relaxations. It is interesting to know how sharp these relaxations
of general quadratic programs are. For the SDP relaxation this has been
answered by [105]. In this section we give the corresponding result for the
copositive programming relaxations and more generally for set-semide inite
programming, i.e., a cone program over the cone C∗

m(K) (see (2.2)).
The results obtained are somewhat negative. They roughly speaking say that
1This chapter is based on [2]

77
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without adding extra restrictions into the relaxation we cannot expect the
copositive programming or set-semide inite programming relaxation of
(nonconvex) quadratic programs to be sharp. To obtain sharper relaxations one
has to consider additional restrictions, e.g., by adding new (convex quadratic)
constraints which are redundant in the original quadratic program. Recent
research has revealed that for several special classes of 0-1 programs such a
sharpening leads to exact copositive programming representations (see e.g.,
[39, 47, 123, 124, 125]). The results in [39] have been extended to
set-semide inite programs (K-SD) by [40]. In this chapter K ⊆ Rm is a given
cone (see (2.2),(2.1)). Future research should show which other classes of
(non-convex) quadratic programs allow similar sharp copositive programming
(or set - semide inite programming) relaxations. In [10], a set of extra
conditions on the original quadratic constraints is presented which guaranty
that the K-SD relaxation is exact.
Note that exact set-semide inite programming relaxations of NP-hard

problems evidently are NP-hard. However the set-semide inite programming
relaxations are convex problems and one may hope that this extra structure
leads to new insight and better algorithms for solving hard (non-convex)
problems.

4.2 Set-Semide inite Relaxation

We consider (QCQP ) given in Section 1.5. Although some arguments given
below have already been mentioned in Section 1.5 we shall repeat them for the
sake of completeness. Consider the (nonconvex) quadratic program with linear
objective function and quadratic constraints:

(QP0) min cT0 u s.t.
qj(u) ≤ 0, j ∈ J

with also: u ∈ K in K-SD case

with quadratic functions qj(u) = γj + 2cTj u + uTCju, Cj ∈ Sm, j ∈ J , and J ,
a inite index set. We can write qj(u) = γj + 2cTj u + uTCju in the form

qj(u) =

⟨
Qj ,

(
1 uT

u uuT

)⟩
whereQj =

(
γj cTj
cj Cj

)
.
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Recall that the relation U = uuT is equivalent to(
1 uT

u U

)
=

(
1

u

)(
1

u

)T

.

In this setting the original program (QP0) takes the equivalent lifted form:

(QP ) min cT0 u s.t.

⟨
Qj ,

(
1 uT

u U

)⟩
≤ 0, j ∈ J,(

1 uT

u U

)
=

(
1

u

)(
1

u

)T

with also: u ∈ K in K-SD case

By replacing the (nonconvex) relation
(
1 uT
u U

)
= ( 1u ) (

1
u )

T by the SDP relaxation,(
1 uT
u U

)
∈ S+

m+1, or the K-SD relaxation,
(
1 uT
u U

)
∈ C∗

m+1(R+ ×K) (see (2.2)), we
are led to the relaxations of (QP ):

(SDP ) min cT0 u s.t.

⟨
Qj ,

(
1 uT

u U

)⟩
≤ 0, j ∈ J

and
(
1 uT

u U

)
∈ S+

m+1

(K-SD) min cT0 u s.t.

⟨
Qj ,

(
1 uT

u U

)⟩
≤ 0, j ∈ J

and
(
1 uT

u U

)
∈ C∗

m+1(R+ ×K)

In case of a K-SD relaxation of QP we always tacitly assume that the original
program (QP0) and thus (QP ) contains the constraint u ∈ K (explicitly or
implicitly). For optimality conditions and more details on K-SD programs and
their dual we refer to [60]. We introduce some notation. Let S denote the set of
quadratic functions de ining the feasible set of (QP0) and (QP ):

S = {Qj : j ∈ J} ≡ {qj(u) : j ∈ J} .

Note that a quadratic function q(u) = γ + 2cTu + uTCu can be identi ied with
the coef icient matrix Q =

(
γ cT
c C

)
. In this chapter, FQP0 ,FQP = FQP(S),

FSDP(S) and FK-SD(S) denote the feasible sets of (QP0), (QP ), the (SDP ) and
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the (K-SD) relaxation, respectively. By FQP
u (S), FSDP

u (S) and FK-SD
u (S) we

denote the projections onto the u-space Rm. Notice that all these feasible sets
de ined by a set S of quadratic inequalities coincide with the feasible sets given
by the conic combinations cone (S), i.e., FQP

u (S) = FQP
u (cone (S)) etc. From

these de initions we ind

FQP0 = FQP
u (S) = FQP

u (cone (S)) ⊂ conv FQP
u (S) .

Since the objective of (QP ) is linear, the minimum value on FQP
u (S) and on

conv FQP
u (S) coincide. By relaxation properties we have:

conv FQP
u (S) ⊂ FSDP

u (S) , conv FQP
u (S) ⊂ FK-SD

u (S)

and also FK-SD
u (S) ⊂ FSDP

u (S) in case (QP ) contains the constraint u ∈ K .
We wish to know how sharp these inclusions are. De ining the set of convex

quadratic functions,

Q+ :=

{
Q =

(
γ cT

c C

)
: C ∈ S+

m

}
for the (SDP ) relaxation this question has been answered by Kojima and
Tunçel in [105].

Theorem 4.1. [105] conv [FQP
u (S)] ⊂ FQP

u (cone (S) ∩Q+) = FSDP
u (S) .

We emphasize that in general the set FQP
u (cone (S) ∩ Q+) is strictly smaller

than the set FQP
u (S ∩ Q+).

Remark 4.2. In [105], based on the theorem above a conceptual algorithm is
discussed which generates a sequence of sets FSDP

u (Sk) which converges to the
set conv [FQP

u (S)]. In each step by solving an SDP a ``cutting'' convex, quadratic
constraint

⟨
QK ,

(
1 uT
u U

)⟩
= γk + 2(ck)Tu + uTCku ≤ 0 with Qk ∈ Q+ is

constructed in such a way that for Sk+1 := Sk ∪ {Qk} we still have
conv [FQP

u (S)] ⊂ FSDP
u (Sk+1) but the set FSDP

u (Sk+1) is strictly smaller than
FSDP
u (Sk). In the context of our generalization such a procedure is no more

useful. For example in the case of K = Rm
+ , instead of a SDP, in each step we

would have to solve a (NP-hard) ``completely positive program''.

We now are able to extend (partially) the result of Theorem 4.1 to the K-SD
relaxation of QP. The setQ+ in the SDP relaxation has now to be replaced by the
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set of ``K-semide inite quadratic functions'':

QK−SD :=

{
Q =

(
γ cT

c C

)
: C ∈ Cm(K)

}

Let us irst present an instructive example. Let FQP
u ({Q}) be the feasible set

de ined by only one inequality

q(u) =
⟨
Q,
(

1 uT
u uuT

)⟩
≤ 0,

Q =
(

γ cT
c C

)
( and u ∈ K) then:

if C /∈ Cm(K) (i.e., q is not ``K-semide inite'') ⇒ FK-SD
u ({Q}) = K .

To see this, note that for C /∈ Cm(K) there exists a vector d ∈ K such that
dTCd < 0. So, for any ixed u ∈ K with U := λddT + uuT it holds⟨

Q,

(
1 uT

u U

)⟩
= γ + 2cTu+ λdTCd+ uTCu < 0 for 0 < λ, λ large

Since U − uuT = λddT ∈ C∗
m(K), Lemma 2.4 implies u ∈ FK-SD

u ({Q}). So, the
K-SD relaxation does not provide any restriction apart from u ∈ K . Generally,
the following holds.

Theorem 4.3. conv [FQP
u (S)] ⊂ conv [FQP

u (cone (S) ∩QK-SD)] ⊂ FK-SD
u (S) .

Proof. The irst inclusion holds trivially. To prove the second, we begin by
showing

Q∗
K-SD =

{(
0 oT
o B

)
: B ∈ C∗

m(K)

}
. (4.1)

In fact,
(

β bT
b B

)
∈ Q∗

K-SD holds if and only if for all
(

γ cT
c C

)
∈ QK-SD, i.e., for all

γ ∈ R, c ∈ Rm, C ∈ Cm(K)we have⟨(
β bT
b B

)
,

(
γ cT
c C

)⟩
= βγ + 2cT b+ ⟨C,B⟩ ≥ 0 .

This obviously implies β = 0,b = o and B ∈ C∗
m(K). On the other hand for any
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(
0 oT
o B

)
, B ∈ C∗

m(K) it holds,⟨(
0 oT
o B

)
,

(
γ cT
c C

)⟩
= ⟨B,C⟩ ≥ 0

since C ∈ Cm(K). To compare the feasible sets we can write

FK-SD
u (S) =

{
u : ∃U such that

(
1 uT

u U

)
∈ −S∗ ∩ C∗

m+1(R+ ×K)

}
and by using the relations (cone(S))∗ = S∗, (K1 ∩K2)

∗ = K∗
1 +K∗

2 (for closed
convex cones) and (4.1) we obtain

FQP
u (cone (S) ∩QK-SD) =

{
u :

⟨(
1 uT

u uuT

)
, Q

⟩
≤ 0 ∀Q ∈ cone (S) ∩QK-SD

}
=

{
u :

(
1 uT

u uuT

)
∈ −(cone (S) ∩QK-SD)∗

}
=

{
u :

(
1 uT

u uuT

)
∈ −(S∗ +Q∗

K-SD)
}

=

{
u :

(
1 uT

u uuT

)
∈ −S∗ −

(
0 oT

o C∗
m(K)

)}
Consequently, u ∈ FQP

u (cone (S) ∩ QK-SD) holds if and only if with some
H ∈ C∗

m(K) we have
(

1 uT
u uuT

)
+
(
0 oT
o H

)
∈ −S∗. But since

uuT +H − uuT ∈ C∗
m(K),u ∈ K , by Lemma 2.4 it follows(
1 uT

u H + uuT

)
∈ −S∗ ∩ C∗

m+1(R+ ×K).

So (with U = H + uuT ), the vector u is contained in the setFK-SD
u (S). Since this

set is convex the second inclusion follows.

To see the difference with the SDP case (in Theorem 4.1) let us chose
u ∈ FK-SD

u (S), i.e., with some U ∈ Sm the relation⟨(
1 uT

u U

)
, Q

⟩
≤ 0 for allQ =

(
γ cT

c C

)
∈ S
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must hold. Then we also obtain⟨(
1 uT

u U

)
, Q

⟩
=

⟨(
1 uT

u U

)
, Q

⟩
+

⟨(
0 oT

o uuT − U

)
, Q

⟩
≤
⟨
C, (uuT − U)

⟩
Unfortunately the converse of Lemma2.4 is not generally true. Sohere, evenwith
Q ∈ cone(S) ∩Q K-SD, i.e., with C ∈ Cm(K), the relation ⟨C,uuT − U⟩ ≤ 0 need
not hold and u need not satisfy the corresponding original constraint ⟨C,uuT ⟩+
2cTu+γ ≤ 0. We give some examples to illustrate the statement of Theorem 4.3
and to show that in general (for K ̸= Rm) the situation is more complicated
than in the SDP case (for K = Rm).

Example 4.4. We chose K = Rm
+ , i.e., the completely positive relaxation. Let us

take the special case S ⊂ Q K-SD. In contrast to the SDP relaxation the set FQP
u (S)

need not be convex. So, an inclusion FK-SD
u (S) ⊂ FQP

u (S) is not true in general.
EvenFK-SD

u (S) ⊂ conv [FQP
u (S)] need not hold as we shall show. Theorem 4.3 only

assures conv [FQP
u (S)] ⊂ FK-SD

u (S). Even in the caseS = {Q}withQ =
(
γ cT
c C

)
∈

Q K-SD the inclusion can be strict. Take for example

C =

(
1
2 1

1 1
2

)
, c = (−2.5 , −2 + ρ) , γ = 8.

The feasibility conditions read:

for FQP
u ({Q}) :1

2
(u21 + u22) + 2u1u2 − 5u1 − (2− ρ)u2 + 8 ≤ 0, and u ∈ R2

+

for FK-SD
u ({Q}) :1

2
(U11 + U22) + 2U12 − 5u1 − (2− ρ)u2 + 8 ≤ 0,

and
(
1 uT

u U

)
∈ C∗

3(Rm
+ )

We have computed the feasible sets. For ρ = 0 the set FQP
u ({Q}) consists of the

point (0, 4) together with the convex (black) set (see Figure 4.1). The set
FK-SD
u ({Q}) equals the (grey) triangle conv[FQP

u ({Q})]. For ρ > 0 (small) the
point (0, 4) is no more feasible for FQP

u ({Q}) (black) and the (convex) set
FK-SD
u ({Q}) (grey) (depending continuously on ρ) is as sketched in Figure 4.2 (for

ρ = 0.2). Obviously in this example ρ = 0.2 we have

FQP
u ({Q}) = conv [FQP

u ({Q})] $ FK-SD
u ({Q}).
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Figure 4.1: FQP
u ({Q}) for ρ = 0 Figure 4.2: FQP

u ({Q}) for ρ = 0.2

For the other special case S ∩Q K-SD = ∅ we have:

conv [FQP
u (cone(S) ∩Q K-SD)] ⊂ FK-SD

u (S) ⊂ conv [FQP
u (S ∩Q K-SD)] = Rm

+ .

The equality on the right-hand side follows by the assumption S ∩ Q K-SD = ∅, so
that the feasibility condition for FQP

u (S ∩Q K-SD) reduces to u ∈ K = Rm
+ .



5
Copositive Programming via Semi-in inite

Optimization1

A tandard way to tackle new problems in mathematics
is to formulate them in a well known form and utilize the

machinery available to solve the problem. In this chapter copositive
programming (COP) is viewed as the special case of linear
semi-in inite programming. We start in the irst section by
formulating a copositive program as a linear semi-in inite
program(LSIP). In section two, irst order optimality conditions and
duality results of LSIP are applied to COP leading to known results
but also to new insight. In section three, we reinterpret
approximation schemes for solving COP as discretization methods
in LSIP. This leads to new explicit error bounds between the
approximate and the original problem. Section ive gives error
bounds for the maximizers in dependence on the order of the
maximizer of the original program. We also show by examples that
maximizers of arbitrarily large order can occur in copositive
programming.

1This chapter is based on [1]

85
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5.1 LSIP Representation of COP

In this section we shall reformulate COP as LSIP. First recall the pair of primal/
dual copositive programs (COP) from Chapter 1,

(COPP ) max
x∈Rn

cTx s.t. B −
n∑

i=1

xiAi ∈ Cm

(COPD) min
Y ∈Sm

⟨Y,B⟩ s.t. ⟨Y,Ai⟩ = ci (i = 1, . . . , n), Y ∈ C∗
m,

We assume throughout that the matrices Ai (i = 1, . . . , n) are linearly
independent. Recall also our standard form of linear semi-in inite primal/dual
programs,

(SIPP ) max
x∈Rn

cTx s.t. b(z)− a(z)Tx ≥ 0 ∀ z ∈ Z,

(SIPD) min
yz

∑
z∈Z

yzb(z) s.t.
∑
z∈Z

yza(z) = c, yz ≥ 0,

Note that the condition A ∈ Cm can be equivalently expressed by either of the
conditions:

zTAz ≥ 0 ∀ z ∈ Bm :=
{
z ∈ Rm

+ : ∥z∥ = 1
}

(unit orthant),

zTAz ≥ 0 ∀ z ∈ ∆m :=

{
z ∈ Rm

+ :

m∑
i=1

zi = 1

}
(unit simplex).

In view of this relation, the primal COP can be written as a (SIPP ) with

a(z) = (zTA1z, . . . , zTAnz)T , b(z) = zTBz, and Z ∈ {Bm,∆m}. (5.1)

In this chapter, we always take Z = ∆m, and de ining

F (x) := B −
n∑

i=1

xiAi

we write the copositive primal problem (COPP ) in the form:

(COPP ) max
x∈Rn

cTx s.t. zTF (x)z ≥ 0 ∀z ∈ Z := ∆m. (5.2)
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In view of (5.1), the feasibility condition for (SIPD) becomes

ci =
∑
z∈Z

yz⟨zzT , Ai⟩ (i = 1, . . . , n) , yz ≥ 0

and with Y :=
∑

z∈Z yz zzT ∈ C∗
m this coincides with the feasibility condition

ci = ⟨Y,Ai⟩ (i = 1, . . . , n) of (COPD). Moreover,∑
z∈Z

yzb(z) =
∑
z∈Z

yz⟨zzT , B⟩ = ⟨Y,B⟩.

So, the dual (SIPD) of (COPP ) in LSIP form (5.2) is equivalent to the COP dual
(COPD) and we simply denote both versions by (COPD).

We shall close this sectionwith anobservationon thenumberof isolated active
indices a copositive program can have. Consider the following program,

(COPQ) max
x∈R

x s.t. −Q− xE ∈ Cm

whereQ ∈ Sm withm = 3n for n ≥ 2 as considered in Example 3.47. The LSIP
formulation of the above program is,

max
x∈R

x s.t. b(z)− a(z)x ≥ 0 ∀ z ∈ ∆m

where b(z) = −zTQz, a(z) = zTEz = 1. Note that in x ≤ −zTQz, for all
z ∈ ∆m equality holds if and only if x = −maxz∈∆m zTQz. Recall from Example
3.47 that maxz∈∆m zTQz = n−1

n . Moreover, there are 3m
3 strict local maximizers

of maxz∈∆m zTQz with value n−1
n .

In view of De inition 1.14 it is clear that the set of active indices of the solution
x = −n−1

n of the above program reads:

Z(x) = {z ∈ ∆m : x = −zTQz} (5.3)

From (5.3) it is clear that the isolated active indices of the copositive program
(COPQ) are precisely the strict local maximizers of zTQz over ∆m, which are
3

m
3 in total as mentioned above implying that |Z(x)| = 3

m
3 . Hence, the

copositive program can have an exponential number of active indices. This fact
also indicates that solving (COPP ) is ``hard''.
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5.2 Optimality Conditions and Duality

From the LSIP form of COP, clearly, any result for LSIP can directly be translated
to COP. We will do this for some optimality conditions and duality results.
As mentioned before, optimality conditions for LSIP are usually presented in

terms of KKT conditions for a feasible candidate maximizer x.
Using (5.1), for the copositive problem in LSIP-form (5.2), the KKT conditions

for LSIP (1.5) translate to

c =
k∑

j=1

yja(zj) =
k∑

j=1

yj


zTj A1zj

...
zTj Anzj

 , zj ∈ Z(x), yj ≥ 0 (j = 1, . . . , k).

(5.4)
It is important to note that any solution of the KKT system with feasible x,
automatically yields a minimizer Y of the dual program (COPD):

Y :=

k∑
j=1

yjzjzTj ∈ C∗
m. (5.5)

Observe that, by Carathéodory's Lemma for cones (see, e.g., [63]), we can
assume that

the KKT condition (5.4) is satis ied with k ≤ n active points zj ∈ Z(x). (5.6)

This implies that the dual minimizer Y allows a representation (5.5) with k ≤ n,
i.e., Y ∈ C∗

m has CP-rank ≤ n.
Before applying the standard results of LSIP to copositive programming, we

have to translate the primal/dual constraint quali ication (Slater condition) from
LSIP (see De inition 1.12) to the copositive terminology.

Lemma 5.1. Consider the copositive problem in its LSIP-formulation (5.2). The
primal LSIP constraint quali ication

(CQP ) : zTF (x0)z ≥ σ0 > 0, for all z ∈ Z and for some σ0 > 0 (5.7)

is satis ied for x0 ∈ Rn if and only if F (x0) ∈ int(Cm). The dual LSIP constraint
quali ication

(CQD) : c ∈ int(M), withM := cone{a(z) : z ∈ Z}
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holds if and only if there exists Y0 feasible for (COPD) such that Y0 ∈ int(C∗
m).

Proof. The fact that (5.7) implies,

F (x0) ∈ int(Cm),

follows immediately from (2.6).
For the converse letF (x0) ∈ int(Cm). Then there exists ε > 0 such thatF ∈ Cm

for allF with ∥F−F (x0)∥ ≤ ε. De ineF := F (x0)− ε√
m
I . Then ∥F−F (x0)∥ ≤ ε

and thus F ∈ Cm. Consequently,

0 ≤ zTFz = zTF (x0)z−
ε√
m
zT z for all z ∈ Z.

Using zT z ≥ 1
m for z ∈ Z , we obtain zTF (x0)z ≥ ε√

mm
=: σ0 > 0 for all z ∈ Z .

To prove the equivalence of the dual constraint quali ications we de ine the
mapping c(Y ) := (⟨A1, Y ⟩, . . . , ⟨An, Y ⟩)T . We irst show that

Y ∈ C∗
m ⇒ c(Y ) ∈ M. (5.8)

To see this, note that Y ∈ C∗
m has a rank-one representation Y =

∑k
j=1 vjvTj

with o ̸= vj ∈ Rm
+ for all j = 1, . . . , k. De ine zj := vj/(vTj e) to obtain zj ∈ Z ,

and yj := (vTj e)2 > 0. Then Y =
∑k

j=1 yjzjzTj . Therefore we get

c(Y ) =
k∑

j=1

yj
(
⟨A1, zjzTj ⟩, . . . , ⟨An, zjzTj ⟩

)T
=

k∑
j=1

yja(zj) ∈ M,

and (5.8) is proved. Now let Y0 ∈ int(C∗
m) be feasible for (COPD), i.e., c(Y0) = c.

To prove c ∈ int(M) we assert that there exists some ε > 0 such that, for any
γ ∈ R, |γ| < ε, the relation

c+ γek ∈ M holds for all (standard basis) vectors ek (k = 1, . . . , n). (5.9)

To show this we note that, since the Ai's are linearly independent, for any k the
linear system c(Yk) = (⟨A1, Yk⟩, . . . , ⟨An, Yk⟩)T = ek has a solution Ỹk ∈ Sm.
Since Y0 ∈ int(C∗

m), there exists some ε > 0 such that for all γ, |γ| < ε:

Yk := Y0 + γỸk ∈ C∗
m for all k = 1, . . . , n.

Using (5.8) and c(Y0) = cwe getM ∋ c(Yk) = c(Y0) + γc(Ỹk) = c+ γek , which
proves (5.9).
We inally show that (CQD) yields some Y0 feasible for (COPD) with Y0 ∈
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int(C∗
m). To do so, choose any Y∗ ∈ int(C∗

m) and de ine:

b := c(Y∗) = (⟨A1, Y∗⟩, . . . , ⟨An, Y∗⟩)T .

Since c ∈ int(M), we have for some ε > 0 that c− εb ∈ M , whichmeans that for
some yj ≥ 0, zj ∈ Z (j = 1, . . . , k)we have

c− εb =
k∑

j=1

yja(zj) =
k∑

j=1

yjc(zjzTj ).

De ining Y :=
∑k

j=1 yjzjzTj ∈ C∗
m, we ind that c(Y ) = c − εb by construction.

Next, de ine Y0 := Y + εY∗. Then Y0 ∈ int(C∗
m) because Y ∈ C∗

m, Y∗ ∈ int(C∗
m)

and C∗
m is a convex cone. Moreover, c(Y0) = c(Y ) + εc(Y∗) = c − εb + εb = c,

which means that Y0 is feasible for (COPD). This completes the proof.

We emphasize that relation (5.6) implies that, under (CQP ) to any maximizer x
of (COPP ), there always exists a corresponding (complementary) optimal
solution Y of (COPD) that has CP-rank ≤ n. Similarly the duality result for
LSIP, Theorem 1.13, can be applied to copositive programming.

5.3 Discretization Methods for COP

Due to the LSIP representation of COP, any solution method of LSIP can directly
be applied to COP. In this chapter, we only consider discretization methods. An
inner and outer approximation algorithm for COP has been proposed and
analysed by Bundfuss and Dür [38]. We re-analyse this approach in the light of
discretization methods in LSIP as outlined in [144]. This will lead to additional
insight and explicit error bounds.
We start with the COP in LSIP-form (5.2) with Z = ∆m. The approach in [38]

is based on the following partition of ∆m.

De inition 5.2. We partition the unit simplex Z = ∆m into initely many sub-
simplices∆1, . . . ,∆k of∆m such that

∆m =
k∪

l=1

∆l and int(∆l) ∩ int(∆p) = ∅ for l ̸= p.

This partition de ines a meshsize d, a discretization Zd and a set Ed of ``edges''
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(pairs of vertices):

Zd ={vj : vj is a vertex of∆l for some l}
Ed ={(vi, vj) : vi, vj are vertices in the same∆l for some l (possibly i = j)}
d =max{∥vi − vj∥ : (vi, vj) ∈ Ed}.

In [38], the following outer and inner approximation schemes for (5.2) are
given:

(Pd) max
x∈Rn

cTx s.t. zTF (x)z ≥ 0 ∀z ∈ Zd,

(P̃d) max
x∈Rn

cTx s.t. uTF (x)v ≥ 0 ∀(u, v) ∈ Ed.

Note that (Pd) represents a special instance of a discretization scheme in LSIP.
(P̃d) provides feasible points for the original copositive problem (COPP ),
see [38] and below. Observe that both (Pd) and (P̃d) are linear programming
problems.
Remark 5.3. Note that any point z ∈ Z = ∆m is contained in one of the
sub-simplices ∆l and thus z ∈ ∆l can be written as a convex combination
z =

∑
ν λνvν , with

∑
ν λν = 1, λν ≥ 0 of vertices vν of ∆l. Consequently, for

any z ∈ Z , the inequality minzj∈Zd
∥z − zj∥ ≤ d holds so that d above really

de ines a meshsize:
d ≥ max

z∈Z
min
zj∈Zd

∥z− zj∥.

In the following, the vector x is always a maximizer of (COPP ) and xd, x̃d are
feasible points (possibly maximizers) of (Pd), (P̃d). We are now going to discuss
some of the convergence results of [144] for our special program (COPP ) in
terms of the meshsize d in an explicit form. The proofs are independent and
mainly based on the following two relations: For any F ∈ Sm and z,u ∈ Rm we
have

zTFu = 1
2

[
zTFz+ uTFu− (z− u)TF (z− u)

]
. (5.10)

Moreover, asmentioned earlier, for every z ∈ ∆l ⊆ Zwehave the representation
z =

∑
ν λνvν with vν the vertices of∆l, λν ≥ 0, and∑ν λν = 1. This gives:

vTν Fvµ ≥ γ, ∀(vν , vµ) ∈ Ed ⇒ zTFz =
∑
ν,µ

λνλµvTν Fvµ ≥ γ ∀z ∈ ∆m.

(5.11)
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Clearly, F(COPP ) ⊂ F(Pd) holds, and using (5.11) for γ = 0 we obtain the
relations

F(P̃d) ⊂ F(COPP ) ⊂ F(Pd) and thus val(P̃d) ≤ val(COPP ) ≤ val(Pd).

(5.12)
We are interested in accurate bounds, e.g., for val(Pd)− val(COPP ) and
val(COPP ) − val(P̃d), depending explicitly on the meshsize d. From [144], we
know that even for nonlinear LSIP under a constraint quali ication, the
approximation error between F(COPP ), val(COPP ) and F(Pd), val(Pd)

behaves like O(d2) in the meshsize d, provided that the discretization Zd of Z
``covers all boundary parts of Z of all dimensions''. In the above discretization
scheme this is automatically ful illed.
Thenext lemmashows that the inner approximation (P̃d)yieldspoints feasible

for the original program (COPP ) and the outer approximation (Pd) generates
points with an infeasibility error of order O(d2).

Lemma 5.4. Let xd, x̃d be feasible for (Pd), (P̃d). Then for all z ∈ Z and for all d
we have:

(a) zTF (xd)z ≥ −1
2∥F (xd)∥ · d2

(b) zTF (x̃d)z ≥ 0.

So x̃d is feasible for (COPP ), and xd is feasible up to an error of orderO(d2).

Proof. Let F = F (xd). Using zTFz ≥ 0 for all z ∈ Zd, we ind from (5.10) that
for all (z,u) ∈ Ed

zTFu = 1
2

[
zTFz+ uTFu− (z− u)TF (z− u)

]
≥ −1

2(z− u)TF (z− u) ≥ −1
2∥F∥∥z− u∥2

≥ −1
2∥F∥ · d2.

The second inequality follows from the fact that with the 2- norms the relation
∥Fz∥ ≤ ∥F∥∥z∥ holds. In view of (5.11), this shows (a). Letting F := F (x̃d), (b)
follows from (5.11) with γ = 0.

Assuming a strictly feasible point x0 we show that small perturbations of any
feasible point xd for (Pd) leads to points in F(COPP ) or even F(P̃d).

Lemma 5.5. Let (CQP ) be satis ied for x0 ∈ F(COPP ) with σ0 > 0 (see (5.7)).
Then for any xd, feasible for (Pd) and d small enough we have:
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(a) x∗d := xd + ρd2(x0 − xd) ∈ F(COPP ) for ρ ≥ ∥F (xd)∥
2σ0

and 0 < ρd2 < 1

(b) x̃∗d := xd + τd2(x0 − xd) ∈ F(P̃d) for τ ≥ ∥F (xd)∥
2σ0+d2(∥F (xd)∥−∥F (x0)∥) and

0 < τd2 < 1
Recall that F(P̃d) ⊂ F(COPP ) holds, cf., (5.12).

(c) If xd is a solution of (Pd), i.e., cTxd = val(Pd) it follows
0 ≤ val(Pd) − val(P̃d) ≤ τ [cT (xd − x0)] · d2 for τ satisfying the bound

in (b).

Proof. Recall that (CQP ) means that zTF (x0)z ≥ σ0 > 0 for all z ∈ Z . Using
this, the fact that F (x∗d) = (1 − ρd2)F (xd) + ρd2F (x0), and Lemma 5.4, we see
that for any z ∈ Z and 0 ≤ 1− ρd2,

zTF (x∗d)z = (1− ρd2)zTF (xd)z+ ρd2zTF (x0)z
≥ −1

2(1− ρd2)∥F (xd)∥ · d2 + ρd2σ0

≥ d2(ρσ0 − 1
2∥F (xd)∥).

which shows (a). Part (b) is proven similarly. Here, observing

F (x̃∗d) = (1− τd2)F (xd) + τd2F (x0),

for any pair (z,u) ∈ Ed, we ind using (5.10), zTF (x0)z ≥ σ0 and zT F (xd) z ≥ 0

zTF (x̃∗d)u = (1− τd2)
1

2
[zTF (xd)z+ uTF (xd)u− (z− u)TF (xd)(z− u)]+

+ τd2
1

2
[zTF (x0)z+ uTF (x0)u− (z− u)TF (x0)(z− u)]

≥ −(1− τd2)
1

2
∥F (xd)∥ d2 + τd2

(
σ0 − d2

∥F (x0)∥
2

)
= d2

(
−∥F (xd)∥

2
+ τ
[
σ0 +

d2

2
(∥F (xd)∥ − ∥F (x0)∥)

])
≥ 0

if τ is chosen as stated (assuming ∥F (x0)∥d2 ≤ σ0, implying τ > 0). The
inequality (c) for the maximum values is deduced easily using that x̃∗d is feasible
for (P̃d):

0 ≤ val(Pd)− val(P̃d) ≤ cT (xd − x̃∗d) = [cT (xd−x0)τ ] · d2.

Observe that the bounds in Lemma 5.5(c) depend on the actual solutions xd of
(Pd). In order to use these bounds (a-priori) we must assure that the solutions
xd exist and that they are bounded. As we shall see below, the key assumption
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here is a dual constraint quali ication. We de ine the distance between a point x
and the set S(COPP ) of maximizers of (COPP ),

δ(x,S(COPP )) := min{∥x− x∥ : x ∈ S(COPP )}.

Under feasibility of (COPP ) the existence of solutions xd of (Pd) and the
convergence towards S(COPP ) follow by only assuming the dual constraint
quali ication (CQD), or equivalently, the boundedness of the level sets
Fα(COPP ) (or the condition ∅ ̸= S(COPP ) compact), see Theorem 1.13.
Theorem 5.6. Let (COPP ) be feasible and let (CQD) be satis ied. Then for any
meshsize d small enough, the sets S(Pd) of optimal solutions of (Pd) are nonempty
and compact. Moreover, for any sequence of solutions xd ∈ S(Pd) we have δ(xd,
S(COPP )) → 0 for d → 0.

Proof. See [108, Theorem 9] for a proof. See also [38, Theorem 4.2(b),(c)]) for a
proof under slightly stronger assumptions.

Since the feasible set F(COPP )may consists of a single point, it is clear that, in
order to ensure the existence of a feasible point the inner approximation (P̃d), we
have to assume that F(COPP ) has interior points (see also [38, Theorem 4.2]).
Theorem5.7. Let (CQP ) and (CQD) hold. Then for anymeshsize d small enough
the sets S(P̃d) of optimal solutions of (P̃d) are nonempty and compact. Moreover,
for any sequence of solutions x̃d ∈ S(P̃d)wehave δ(x̃d,S(COPP )) → 0 for d → 0.

Proof. If (CQP ) holds for x0, thenwe ind from (5.10) that for all (u, v) ∈ Ed and
d small enough

uTF (x0)v = 1
2

[
uTF (x0)u+ vTF (x0)v− (u− v)TF (x0)(u− v)

]
≥ σ0 − 1

2∥F (x0)∥ · d2 ≥ 0.

Hence x0 ∈ F(P̃d) if d is small. By (CQD) the level setsFα(COPP ) are bounded
(compact) (see Theorem 1.13). Since Fα(P̃d) ⊂ Fα(COPP ) (see (5.12)), also
the level setsFα(P̃d) are bounded. Therefore, solutions x̃d of the linear programs
(P̃d) exist and the sets S(P̃d) of maximizers are nonempty and compact.

Suppose now that a sequence x̃dk of such solutions does not satisfy

δ(x̃dk ,S(COPP )) → 0 for k → ∞.

Then there exists ε > 0 and a subsequence x̃dkν such that

δ(x̃dkν ,S(COPP )) ≥ ε ∀ν. (5.13)
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Since theminimizers x̃dkν are elements of a compact setFα(COPP )wecan select
a convergent subsequence and without loss of generality we can assume,

x̃dkν → x̂ ∈ Fα(COPP ) for ν → ∞.

In view of Lemma 5.5 (c) we have val(Pd)− val(P̃d) → 0 and thus, by (5.12),

val(P̃d) → val(COPP ), d → 0.

This yields,

cT x̃dkν = val(Pdkν
) → cT x̂ = val(COPP ), ν → ∞

and since x̂ ∈ Fα(COPP ) is feasible for (COPP ) we obtain x̂ ∈ S(COPP )
contradicting (5.13).

The next example shows that it may happen that every program (Pd) and (P̃d)

has a solution while no solution of the original program (COPP ) exists.

Example 5.8. Consider the copositive program ( based on [30, Theorem 3.1]) with
c = (1, 1, 0)T and

B =

1 0 0
0 0 −1
0 −1 0

 , A1 =

1 0 0
0 0 0
0 0 0

 , A2 =

0 0 0
0 1 0
0 0 0

 , A3 =

0 0 0
0 0 0
0 0 1

 .

Then (COPP ) becomes:

max x1 + x2 s.t. F (x1, x2, x3) :=

1− x1 0 0
0 −x2 −1
0 −1 −x3

 ∈ C3 .

The feasibility conditions for this program read:

x1 ≤ 1 , x2 ≤ 0 , x3 ≤ 0 , x2x3 ≥ 1 .

Obviously, x1 + x2 ≤ 1 holds for any feasible x and for any ϵ > 0 the point x =
(1,−ϵ,−1/ϵ)T is feasible with objective value x1 + x2 = 1− ϵ. On the other hand,
no feasible x exists with objective x1 + x2 = 1 (x2 = 0 is excluded). So, the sup
value of (COPP ) is val(COPP ) = 1 but amaximizer does not exist. Now, consider
the program (Pd):

(Pd) max x1 + x2 s.t. zTF (x1, x2, x3)z ≥ 0 ∀z ∈ Zd.
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where Zd is any ( inite) discretization of ∆3 containing the basis vectors
z = ei ∈ R3, i = 1, 2, 3. Then (Pd) in particular contains the constraints

eTi F (x)ei ≥ 0, i = 1, 2, 3 or 1− x1 ≥ 0 , x2 ≤ 0 , x3 ≤ 0 .

This implies x1 + x2 ≤ 1. So, the linear program (Pd) is bounded and a solution
exists. In fact, any program (Pd) has a solution xd = (1, 0, x3(d))

T with objective
value val(Pd) = 1 (and x3(d) → −∞ for d → 0).

Note that also the inner LP-approximations (P̃d)have solutions. Indeed, since the
feasible sets F(P̃d) are contained in F(COPP ), the values val(P̃d) are bounded
by 1. Moreover the feasible sets are non-empty. To see this take e.g. the (CQP )
-point x0 = (0,−2,−2)T in the interior of F(COPP ). Then, as in the proof of
Theorem 5.7, it follows x0 ∈ F(P̃d), provided d is small enough.

We inish this section with some remarks. Note that for any solution xd of the
standard linear program (Pd) the KKT condition holds:

c =
k∑

j=1

yj ·
(
zTj A1zj , . . . , zTj Anzj

)
, for some yj ≥ 0, zj ∈ Zd(xd) , (5.14)

where Zd(xd) := {z ∈ Zd : zTF (xd)z = 0}. Again, any such solution xd
generates a dual feasible matrix

Y d :=

k∑
j=1

yjzjzTj ∈ F(COPD),

such that

⟨Y d, B⟩ = val(Pd) ≥ val(COPD) ≥ val(COPP ).

Remark 5.9. Any solution x̃d of (P̃d) also satis ies the KKT condition

c =
s∑

j=1

ỹj ·
(
uT
j A1vj , . . . ,uT

j Anvj
)
, ỹj ≥ 0, (uj , vj) ∈ Ed(x̃d), s ∈ N,

whereEd(x̃d) := {(u, v) ∈ Ed : uTF (x̃d)v = 0}. Such a solution x̃d generates the
matrix Ỹd :=

∑s
j=1 ỹj ·

1
2(ujvTj +vjuT

j )which satis ies the constraints ⟨Ỹd, Ai⟩ = ci

for all i. However, in general, Ỹ /∈ C∗
m, so Ỹ is not necessarily feasible for (COPD).

Using (5.10), we see (under the assumption of Theorem 5.6) that Ỹd is in C∗
m up to

an error of orderO(d2).
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5.3.1 Comparison with an Inner Approximation

In this subsection, we consider a special discretization scheme irst considered
in [47] which is connected to an inner approximation of Cm by subsets
Cr
m ⊂ Cm. For r ∈ N, let us de ine

Cr
m :=

A ∈ Sm :

m∑
i,j=1

aijx
2
ix

2
j

(
m∑
k=1

x2k

)r

has non-negative coef icients

 .

The following is shown in [47] :

Cr
m ⊂ Cr+1

m ⊂ . . . ⊂ Cm and cl
(
lim
r→∞

Cr
m

)
= Cm.

The interesting connection with the discretization approach above is based on
the following description of the sets Cr

m(see[28]),

Cr−2
m = {A ∈ Sm : vTAv− vT diag(A) ≥ 0 for all v ∈ Irm}, (5.15)

where Irm is the grid Irm = {v ∈ Nm :
∑m

j=1 vj = r}. By (5.15), we can write,

Cr−2
m = {A ∈ Sm : zTAz− 1

rz
T diag(A) ≥ 0 for all z ∈ Z0

d := 1
r I

r
m}. (5.16)

Remark 5.10. Note that the cone Cr−2
m can be seen as the special instance of the

generalised cone, Cm(K,α) (see (2.4)) by taking K = cone(1r Irm), α = 1
r . In this

setting the dual of Cr−2
m is given by

Cr−2
m

∗
=

{
U ∈ Sm : U =

∑
i

(uiuT
i − 1

r
Diag(ui)),ui ∈ K

}
.

It is not dif icult to see that the setZ0
d := 1

r I
r
m de ines a uniform discretization

of the simplex Z = ∆m with meshsize of Z0
d given by

d = max
zj∈

1
r I

r
m

min
zi∈

1
r I

r
m, zi ̸=zj

∥zj − zi∥ =
√
2
r .

So it is natural to compare the outer and inner approximations (Pd), (P̃d) of
(COPP ) in Section 5.3 with the following approximations, where d =

√
2/r,

r ∈ N:

(P̂d) max
x∈Rn

cTx s.t. zTF (x)z− d√
2
zT diag(F (x)) ≥ 0 ∀z ∈ Z0

d . (5.17)
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Note that, by (5.16), a point x is feasible for (P̂d) if and only if F (x) ∈ Cr−2
m . So

(P̂d) provides an inner approximation, i.e., F(P̂d) ⊂ F(COPP ) and val(P̂d) ≤
val(COPP ). Similar to Lemma 5.5 we obtain

Lemma5.11. Let (CQP ) be satis ied for x0 ∈ F(COPP ). Thenwith the solutions
xd of (Pd) (with discretizationZd = Z0

d) the following holds for all d =
√
2
r , r ∈ N,

d small enough:

x̂∗d = xd + τd(x0 − xd) ∈ F(P̂d) ⊂ F(COPP )

and
0 ≤ val(Pd)− val(P̂d) ≤ τ [cT (xd − x0)] · d

if τ ≥ ∥ diag(F (xd))∥√
2σ0−d∥ diag(F (x0))∥

and 0 < τd < 1.

Proof. We use the relation F (x̂∗d) = (1− τd)F (xd) + τdF (x0) and proceed as in
the proof of Lemma 5.5. By Lemma 5.4, using the relation ∥z∥ ≤ 1 for z ∈ Z0

d

and zTF (xd)z ≥ 0 for z ∈ Zd = Z0
d , we obtain for any z ∈ Z0

d :

zTF (x̂∗d)z− d√
2
zT diag(F (x̂∗d)) = [(1− τd)zTF (xd)z+ τdzTF (x0)z

− d√
2
(1− τd)zT diag(F (xd))− τ d2√

2
zT diag(F (x0))]

≥ τdσ0 − d√
2
(1− τd)∥ diag(F (xd))∥ − τ d2√

2
∥diag(F (x0))∥

≥ d

[
τ

(
σ0 −

d√
2
∥diag(F (x0))∥

)
− ∥diag(F (xd))∥√

2

]
≥ 0

for any d > 0 (small enough) if τ is as given above. This shows the irst relation.
The inequality for the maximum values follows again easily using that x̂∗d is
feasible for (P̂d) :

0 ≤ val(Pd)− val(P̂d) ≤ cT (xd − x̂∗d) = [cT (xd − x0)τ ] · d

According to the analysis above, under the assumption that the sequence xd, d →
0, is bounded (cf., Theorem 5.6), we have established the following error bounds
(the last bound holds for Z0

d = 1
r I

r
m with d =

√
2/r, r ∈ N):

0 ≤val(Pd)− val(COPP ) ≤ O(d2),

0 ≤val(COPP )− val(P̃d) ≤ O(d2),

0 ≤val(COPP )− val(P̂d) ≤ O(d).

The next example shows that the bound O(d) for (P̂d) is sharp.
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Example 5.12. We consider the program,

(P ) max
x∈R

x s.t. F (x) :=

(
1 −1
−1 1

)
+ x

(
0 −1
−1 0

)
∈ C2.

The maximizer of (COPP ) is x = 0with val(COPP ) = x = 0. The corresponding
unique active index is z = (12 ,

1
2)

T . For odd r = 2l + 1 and d =
√
2/r, the

discretization Z0
d of Z = ∆2 = {z ∈ R2

+ : z1 + z2 = 1} is given by

Z0
d =

{
z(λ) := λ

(
1

0

)
+ (1− λ)

(
0

1

)
: λ = i

r , i = 0, . . . , r

}
.

It is not dif icult to see that the optimal solutions of (Pd), (P̂d) are given by the
solutions xd, x̂d of the equations

z
(

l

2l + 1

)T

F (x)z
(

l

2l + 1

)
= 0,

z
(

l

2l + 1

)T

F (x)z
(

l

2l + 1

)
− d√

2
z
(

l

2l + 1

)T

diagF (x) = 0,

respectively. After some calculations we obtain val(Pd) = xd = 1
2

1
l(l+1) = O(d2)

and

val(P̂d) = x̂d = −
√
2d

2

[
1 +

2l2 + 1

2l(l + 1)

]
+

1

2l(l + 1)
= −

√
2d+O(d2) = O(d).

Let us inally compare the inner approximations (P̃d) and (P̂d). It is not
dif icult to show that the number of points in the discretization Z0

d for d =
√
2

(r+2)

(approximation by Cr
m see [154]) are given by N :=

(
m+r−1

r

)
. To obtain a

corresponding inner approximation (P̃d) one could think of the so-called
Delauney triangulation (by simplices) of the point set Z0

d . The number of edges
in such a triangulation is ``much smaller'' than N2 (edge from each point to
each other, instead of edges only to ``neighbouring points''). So (for ixed m)
the same order of approximation O( 1

r2
) (wrt. r) would require ``much less''

thanN2 =
(
m+r−1

r

)2 constraints in (P̃d) and
(
m+r2−1

r2

)
constraints in (P̂d). This

can be seen to be in favor of the scheme (P̃d).

Interested in an inner approximation, one could also avoid both inner
approximations (P̃d), (P̂d) and only make use of (Pd). Indeed, the a-posteriori
error bound of Lemma 5.5 allows us to construct a feasible point
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x∗d = xd + O(d2) from the ``outer approximation'' xd if a strictly feasible point
x0 is available.

We wish to emphasize that in practice, the pure discretization methods have
to be modi ied to a so-called exchange method where (as in [38]) during the
computation only those grid points in Zd are kept in the discretization which
still play a role as candidates for the active points zj ∈ Z(x) of a solution x of
(COPP ) (see also [108]). For such exchange methods the bounds obtained
above remain valid.

5.4 Order of Convergence for the Maximizers

In this section, we shortly discuss error bounds for ∥x− xd∥, ∥x− x̃d∥, ∥x− x̂d∥
for the maximizers of (Pd), (P̃d), (P̂d), respectively. These bounds are based on
the concept of the order of a maximizer. A feasible point x ∈ F(COPP ) is a
maximizer of (COPP ) of order p > 0, iff with some γ > 0, ε > 0

cTx ≥ cTx+ γ∥x− x∥p for all x ∈ F(COPP ), ∥x− x∥ < ε (5.18)

holds. Note that, if x is amaximizer of order 0 < p, in particular,S(COPP ) = {x}
is nonempty and compact. So, by Theorem 1.13 the condition (CQD) is satis ied
and we can apply Theorem 5.6.

Corollary 5.13. Let (CQP ) be satis ied and let x be a maximizer of (COPP ) of
order p ≥ 1. Then for the maximizers xd, x̃d, x̂d of (Pd), (P̃d), (P̂d), respectively,
we have:

∥x− xd∥ = O(d2/p), ∥x− x̃d∥ = O(d2/p), ∥x− x̂d∥ = O(d1/p).

Proof. Recall from Lemma 5.5(a) that x∗d := xd+ ρd2(x0−xd) ∈ F(COPP ) for ρ
large enough. Using (5.18) and cT (x−xd) ≤ 0we get (x∗d is feasible for (COPP )),

∥x− x∗d∥p ≤ 1
γ c

T (x− x∗d) = 1
γ c

T (x− xd)− ρ
γd

2cT (x0 − xd)

≤ ρ
γd

2cT (xd − x0) ≤ O(d2)

or ∥x− x∗d∥ ≤ O(d2/p). We thus ind using 1 ≤ p,

∥x− xd∥ ≤ ∥x− x∗d∥+ ∥x∗d − xd∥
≤ O(d2/p) +O(d2) = O(d2/p) .
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The other bounds are proven in the same way. For x̂d, e.g., we obtain using
Lemma 5.11

∥x− x̂d∥ ≤ ∥x− x̂∗d∥+ ∥x̂∗d − x̂d∥
= O(d1/p) +O(d) = O(d1/p) .

According to this corollary, the smaller the order p of the maximizer x, the faster
is the convergence. The following examples show that for copositive programs
(COPP ) (unique)maximizer of order 1,2 and of arbitrarily large order can occur.

Example 5.14. Obviously, in Example 5.8 the maximizer x = 0 is of order p = 1.
Considering the copositive program:

(P ) max x1 s.t. F (x) :=

−x1 x2 0
x2 1 0
0 0 −x2

 ∈ C3 ,

we see that x is feasible if and only if−x1 ≥ 0,−x2 ≥ 0 and−x1 −x22 ≥ 0 hold, or

x1 ≤ 0 , x2 ≤ 0 , x1 ≤ −x22.

The maximum value is x1 = 0 implying x2 = 0. So x = (0, 0)T is the unique
maximizer. For the feasible points x = (−x22, x2)

T , x2 < 0 (|x2| small) we ind
with ||x||∞ := max{|x1|, |x2|}:

cTx− cTx = x22 = ||x||2∞.

and x is a maximizer of order 2. Now, we take the program,

(P ) max x1 s.t. F (x) :=


−x1 x2 0 0 0
x2 1 0 0 0
0 0 −x2 x3 0
0 0 x3 1 0
0 0 0 0 −x3

 ∈ C5.

In view of the block structure of F (x) a vector x ∈ R3 is feasible if and only if:

x1 ≤ 0 , x2 ≤ 0 , x3 ≤ 0 , x1 ≤ −x22 , x2 ≤ −x23

Thus x =
(
0 0 0

)T is the (unique) maximizer and with feasible vectors x =
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(
−x43 −x23 x3

)T
x3 < 0 (|x3| small) we ind ,

cTx− cTx = x43 = ||x||4∞ ,

showing that x is a maximizer of order 4. Similarly we can construct copositive
programs with maximizer of arbitrarily large order.

Remark 5.15. In [28, Section 3], approximation results have been established for
the values v∗ = minz∈∆m zTAz with A ∈ Sm. Note that v∗ is in fact the value of
(StQP ) where maximization is replaced with minimization. We brie ly show that
these bounds appear in our result above as special instances. Obviously v∗ is the
value of

(COPP ) max
x∈R

x s.t. zT (A− xI)z ≥ 0 ∀z ∈ Z := ∆m,

with dual

(D) min
Y ∈Sm

⟨Y,A⟩ s.t. ⟨Y, I⟩ = 1, Y ∈ C∗
m.

Obviously, (COPP ) satis ies (CQP )with some x0 (small enough) and also (COPD)
has strictly feasible matrices Y0 (with any Y ∈ int(C∗

m) take Y0 = Y /⟨Y, I⟩). Let x
be the solution of (COPP ) and consider the approximations (Pd), (P̃d) de ined by
the grids Z0

d (d =
√
2/r) with corresponding values vd, ṽd and solutions xd, x̃d. It

is easy to see that these solutions must be unique, satisfy x0 ≤ x̃d ≤ x ≤ xd and
are monotonic, i.e., x̃d ↑ x, xd ↓ x for d → 0. Then by Lemma 5.5(a) we obtain
the bound

0 ≤ vd − v∗ = xd − x ≤ xd − x∗d =
∥F (xd)∥

2σ0

(
xd − x0

)
d2.

and Lemma 5.11 yields

0 ≤ v∗ − ṽd ≤ vd − ṽd ≤ xd − x̃∗d ≤ τ
(
xd − x0

)
d .

The latter gives (up to a constant factor) the bound in [28] and the irst bound yields
aO(d2) error instead of a rateO(d) in [28].
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Summary

In this thesis, copositive programming and problems associated with copositive
programming are studied. Copositive programming refers to the following:

(COPP ) max
x∈Rn

cTx s.t. B −
n∑

i=1

xiAi ∈ Cm

(COPD) min
Y ∈Sm

⟨Y,B⟩ s.t. ⟨Y,Ai⟩ = ci ∀i = 1, · · · , n, Y ∈ C∗
m,

where Cm and C∗
m are, respectively, the cone of copositive and completely

positive matrices de ined below,

Cm := {A ∈ Sm : vTAv ≥ 0 for all v ∈ Rm
+},

C∗
m :=

{
A ∈ Sm : A =

N∑
k=1

bkbTk with bk ∈ Rm
+ , N ∈ N

}
.

In the last decade copositive programming has gained much attention. A main
contribution is the result of Burer [39], saying that mixed binary continuous
optimization problems can be reformulated, exactly, as a copositive program.
Associated with the feasibility problem of copositive programming is the

standard quadratic program (StQP). We have given a particular attention to this
problem. We have provided a characterization for a KKT point to be a strict
local maximizer of StQP. We have also analysed the effect of small
perturbations, in the matrix involved, to strict local maximizers of StQP.
Strict localmaximizers of StQPare related to thenotionof evolutionarily stable

strategy (ESS). In fact, for a symmetric matrix a point is a strict local maximzier
of StQP if and only if it is an ESS. We have shown that for a symmetric matrix,
with each principal submatrix nonsingular, there always exists an ESS. Moreover
the existence of an ESS in symmetric matrices is a generic property.
A matrix Q ∈ Sm is said to be set-semide inite if vTQv ≥ 0 holds for all v ∈

K ⊆ Rm. The set of all set-semide inite matrices forms a cone called the set-
semide inite cone. Cone programming problems over a cone of set-semide inite
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matrices are called set-semide inite programs.
Hard optimization problems can be (approximately) reformulated by cone

programming relaxations. This reformulation provides bounds for the original
problem. In this thesis we have analysed the sharpness of set-semide inite
programming relaxations for quadratically constrained quadratic program
(QCQP). The result we have obtained is somewhat negative. It roughly speaking
says that without adding extra restrictions into the relaxation we cannot expect
the set-semide inite relaxation of (nonconvex) quadratic programs to be sharp.
Mathematical programming can be classi ied into inite and in inite problems.

A special case of in inite problems is given by semi-in inite programming,
where the number of constraints are in inite while the number of variables are
inite. In this thesis we have considered the following primal linear
semi-in inite programming problem,

(SIPP ) max
x∈Rn

cTx s.t. b(z)− a(z)Tx ≥ 0 ∀ z ∈ Z,

with an in inite compact index set Z ⊂ Rm and continuous functions
a : Z → Rn and b : Z → R.
An alternative condition for a matrix Q to be copositive is that vTQv ≥ 0

holds for all v ∈ ∆m, where∆m is the standard simplex. By using this condition
one can reformulate copositive programming as semi-in inite programming.
We have used this reformulation to analyse copositive programming from the
viewpoint of SIP.

A discritization of the simplex de ines a simplicial partition. By using such
partitions an approximation method for copositive programming is presented.
This approximation method can be seen as a special case of a discritization
method for semi-in inite programming. We have analysed the behaviour of the
approximation error in dependence of the discretization meshsize d. We have
shown that the error for the optimal values of the schemes in [38] behave like
O(d2) for d → 0. Another scheme (P̂d) shows a convergence rate O(d). The
concept of order of maximizers allows to analyse the behaviour of the error for
the maximizers in the approximation schemes. It also has been shown that
maximizer of arbitrary large order may appear in copositive programming.



اور ط

ب ا ر ت د ب د ر ا اد ر
۔ اس اور ط خ ذ ا ر اس ۔

: ر ذ درج اد رى ط

max
x∈Rn

cTx s.t. B −
n∑

i=1

xiAi ∈ Cm

min
Y ∈Sm

⟨Y,B⟩ s.t. ⟨Y,Ai⟩ = ci ∀i = 1, · · · , n, Y ∈ C∗
m,

و ہ اور ط C∗
m اور Cm ں

: دى ذ

Cm := {A ∈ Sm : vTAv ≥ 0 ∀ v ∈ Rm
+},

C∗
m :=

{
A ∈ Sm : A =

N∑
k=1

bkbTk with bk ∈ Rm
+ , N ∈ N

}
.

ط ر ر ا ا ط ّ د
۔

ا درا ى ن ا ط ا ط
۔ دى ذ ر د م رى اس ۔

max q(v) :=
1

2
vTQv s.t. v ∈ ∆m :=

{
v ∈ Rm

+ :
m∑
i=1

vi = 1

}
.

ا ا ۔ دى ا رى اس
م وا ن ار ہ ت اس ۔ د

۔ ا د
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۔ ار رى ا ذ درج v ∈ ∆m ا Q د

u ∈ ∆m م vTQv ≥ uTQv ا.

vTQu > uTQu v ̸= u, vTQv = uTQv ا u ∈ ∆m ي.

رت در ۔ ار د رى
ا وہ اس ۔ ار وہ د

۔ ار ا از ں ذ
۔ vTQv v ∈ K ⊆ Rm م ا Q

و ا ۔ و و وا ں
۔ ں، و

ا اس ۔ ر و ہ ا
۔ ں ر ى ف اور ت ا

ر ں ا دہ رے
۔ ورت ت ا ا رت ں ر

ذ ا ۔ اور ر
اس ۔ اد ں اد ات

۔ ل ا ى ذ درج

max
x∈Rn

cTx s.t. b(z)− a(z)Tx ≥ 0 ∀ z ∈ Z,

۔ b : Z → R اور a : Z → Rn رى Zا ⊆ Rm ر
vTQv ، v ∈ ∆m م ط دل ا ط Q

ر ى ط ل ا ط دل اس ۔
۔ ل ا ا دو اور ا ط اس ۔

ط ر ى ہ اور ا اس
د ط اس ۔ ل ا

۔ ى ر ا
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ESS Evolutionarily Stable Strategy, page 55

LP Linear Programming, page 7

LSIP Linear Semi-in inite Program, page 11

SDP Semide inite Programming, page 8

StQP Standard Quadratic Programming, page 40

Cone

C∗
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Cm the copositive cone, page 4

Cm(K) the cone of set-semide inite matrices, page 20

C∗
m(K) the dual of the cone of set-semide inite matrices, page 20

Nm the cone ofm×m symmetric, nonnegative matrices, page 6
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S+
m the positive semide inite cone , page 4

S++
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Matrix
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O thematrix of all zeros, the order ofOwill be clear from the context, page 28

QJ the principal submatrix obtained after deleting the rows and the columns
of the matrix Q not corresponding to the elements of the index set J ⊆ U
i.e. (QJ)ij = qij for all i ∈ J, j ∈ J , page 26

rank(A) rank of the matrixA, page 32

Mathematical Programming

(ConeD) the dual cone program, page 5

(ConeP ) Primal cone program, page 5

(COPD) the dual copositive program, page 10

(COPP ) the primal copositive program, page 10

(SIPD) the Haar dual of the linear semi-in inite program (SIPP ), page 11

(SIPP ) the linear semi-in inite program, page 11

F(P ) set of feasible points of the program (P ), page 6

val(P ) value of the program (P ), page 6

S(P) the set of maximizers of the program (P ), page 12
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⟨., .⟩ standard inner product, i.e., ⟨U, V ⟩ = tr(UTV ) for U, V ∈ Rm×n, page 4

Nϵ(v) the ε-neighbourhood of v ∈ Rm, i.e.,Nε(v) := {v ∈ Rm : ||v− v|| ≤ ε}, for
ε > 0, page 42

Set

conv (S) the convex hull of the set S, page 4

U U := {1, 2, · · · ,m}, page 24

int(S) interior of the set S, page 7

⌊a⌋ the largest integer less then or equal to a, page 65

R the real space, page 3

Rm them-dimensional real space, page 3

Rm
+ the nonnegative orthant, page 3

Rm
++ Rm

++ := {b ∈ Rm : bi > 0, ∀ i = 1, . . . ,m}, page 34

Rm×n the space ofm× n real matrices, page 3

rint(S) the relative interior of the set S, page 45

aff(S) the af ine hull of the set S, page 45
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e the vector of all ones, usually e ∈ Rm, otherwise the dimension of e is clear
from the context, page 24

o the vector of all-zeros, the dimension of o will be clear from the context,
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vJ the sub vector corresponding to the elements of the index set J , i.e, (vJ)i =
vi for all i ∈ J , page 28

||u|| the Euclidean norm of the vector u ∈ Rm i.e. ||u|| :=
√∑m

i u2
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active index set, 12
adjoint of the matrix, 26
af ine hull, 44
af ine subspace, 44

clique, 63
maximal clique, 63

cofactor of the matrix, 25
completely positive cone, 30

interior, 34
extreme rays, 37

cone, 4
set-semide inite cone, 19
completely positive cone, 5, 30
copositive cone, 4, 23
dual cone, 4
extreme ray, 28
pointed cone, 4
positive semide inite cone, 4

cone programming, 5
copositive programming, 10
Slater condition, 7
strong duality, 7
weak duality, 5

cone programming relaxation, 14
convex hull, 3
convex set, 3

face, 46
relative interior, 45

copositive cone, 23
extreme rays, 28
interior, 29

copositive programming, 10
CP-rank, 32

diagonally dominant, 35

evolutionarily stable strategy, 54
pattern of ESS, 60

feasible direction, 41

ixed point, 70

Jensen inequality, 71

matrix
comparison matrix, 33
M-matrix, 33
completely positive matrix, 5
copositive matrix, 4
diagonally dominant matrix, 35
doubly nonnegative matrix, 31
Frobenius norm, 51
positive semidefnite matrix, 4
strictly copositive matrix, 29

replicator dynamics, 71

Schur complement, 20
selection equations, 71
semi-in inite programming, 11

active index set, 12
discretization methods, 13
KKT conditions, 13
level set, 12
optimality condition, 13
Slater condition, 12
strong duality, 12

Slater condition
cone programming, 7
semi-in inite programming, 12

Sperner's Lemma, 65
standard quadratic programming, 40

KKT conditions, 41
linear independence constraints
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order of maximizer, 42
strict complimentarity, 41
strong second order condition, 53

support of the vector, 41

123


	Preliminaries
	Introduction
	Basic Definitions
	Cone Programming
	Linear Programming
	Semidefinite Programming
	Copositive Programming

	Semi-infinite Programming
	Cone Programming Relaxations of Quadratic Problems
	Thesis Outline

	Cones of Matrices
	 Set-Semidefinite Cone 
	Copositive Cone
	Copositivity and Positive Semidefiniteness
	Characterization of Copositivity
	Interior and Extreme Rays

	Completely Positive Cone
	Interior and Extreme Rays


	The Standard Quadratic Programming Problem
	Introduction
	Optimality Conditions
	Stability Analysis
	Evolutionarily Stable Strategy
	Existence of ESS
	Patterns of ESS
	ESS in {0,1} Matrices
	Number of ESS
	ESS in Random Matrices

	Vector Iterations
	Genericity

	Nonconvex Quadratic ProgrammingThis chapter is based on AhmedStillNote
	Introduction
	Set-Semidefinite Relaxation 

	Copositive Programming via Semi-infinite OptimizationThis chapter is based on AhmedStillSipCOP
	LSIP Representation of COP
	Optimality and Duality
	Discretization Methods for COP
	Comparison with an Inner Approximation

	Order of Convergence for the Maximizers

	Bibliography
	Summary
	Summary(Urdu)
	Acknowledgment
	List of Notations
	Index

