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Preliminaries

OUNDATION of mathematical optimization relies on the urge
F to utilize available resources to their optimum. This leads to
mathematical programs where an objective function is optimized
over a set of constraints. The set of constraints can represent
different structures, for example, a polyhedron, a box or a cone.
Mathematical programs with cone constraints are called cone
programs. A sub area of mathematical optimization is the one
where the number of variables is finite while the number of
constraints is infinite, known as semi-infinite programming. In this
chapter we will start with a general introduction into the thesis. In
the second section some basic definitions are given which are used
throughout the thesis. The third and the fourth section provide a
brief review of results on cone programming and semi-infinite
programming, respectively. In section five we will briefly discuss
cone programming relaxations. In the last section we shall give an
overview over results presented in the thesis.



2 1.1. INTRODUCTION

1.1 Introduction

In mathematical optimization an objective function is required to be optimized
over a set of side conditions called constraints. More precisely, mathematical
optimization, refers to the following problem:

max f(x) st g;j(x)<0, jeJxeS

where S C R", J an index set (possibly infinite) and f : R" — R, g; : R" —
R. The function f is called objective function while the functions g; represent
constraints. A pointx € S'is called feasible, if it satisfies all constraints g;(x) < 0,
j € J. The optimization problem is called feasible if there exists at least one
point x € S satisfying all constraints.

If a point X € S satisfies all constraints and the value of the objective function,
f(X), is optimal, then this point, X, is called a solution. An optimization problem
can have more than one solution, or no solution at all.

Mathematical programming emerged as an independent area of mathematics
in the second half of the previous century. Its root can be traced back to the
work of ancient Chinese mathematicians, to the work of Euler, Leibniz,
Lagrange and Newton (for a history of optimization see [77]). Mathematical
optimization is a rich field of mathematics with numerous applications. In
order to give a flavour of applicability of mathematical optimization to real
world problems, we quote: " In many of their approaches to understand nature,
physicists, chemists, biologists, and others assume that the systems they try to
comprehend tend to reach a state that is characterized by the optimality of
some function" [[77] and “To make decisions optimally is a basic human desire.
Whenever the situation and the objectives can be described quantitatively, this
desire can be satisfied, to some extent, by using mathematical tools, specifically
those provided by optimization theory and algorithms" [11]].

Mathematical optimization is a vast area of mathematics. It can be classified
in various ways. A fundamental classification is linear optimization and
nonlinear optimization. Nonlinear optimization contains both “hard" and
“easy' problems. Nonlinear optimization can be further classified as convex
optimization and non-convex optimization. A sub-area of mathematical
optimization is the one where the number of variables are finite while the
number of constraints are infinite, known as semi-infinite programming,.
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In mathematical optimization the constraint set may represent a geometrical
structure. If the variables are restricted to take values from a so-called cone,
then we have a cone program. Cone programming not only contains convex
programming as a special case, but some nonconvex optimization problems can
also be reformulated as a cone program.

Cone programs over the copositive cone or the completely positive cone are
referred to as copositive programming. In the last decade copositive
programming has caught much attention due to the fact that many hard
optimization problems can be exactly reformulated as a copositive program. In
this thesis we shall deal with copositive programming and problems related to
copositive programming. As we shall see, feasibility in copositive programming
amounts to solving a so-called standard quadratic optimization problem.
Optimality conditions and solution methods for copositive programming are
also discussed from a viewpoint of linear semi-infinite programming. We will
also look at the sharpness of copositive programming relaxations of
quadratically constrained quadratic programs.

1.2 Basic Definitions

In this section we will give the basic notations and definitions used throughout
the thesis. Following the usual convention the set of all real numbers will be
denoted by R while R denotes the set of all nonnegative real numbers. Similarly
for given positive integers m, n, R”" and R”*" denote the set of all real vectors of
size m and the set of all m x n real matrices, respectively. Moreover, the vectors
will be denoted by bold small letters while the elements of the vectors will be
denoted by small letters with subscripts. For example, the i*" element of v € R™
will be written as v;. For the complete list of notation the interested reader is
referred to the List of Notations given at page 21

This thesis is mainly concerned with cone programming or specifically
copositive programming. First we will define what is meant by a convex set and

a convex cone,

Definition 1.1 (Convex Set). A set.S C R™ is called convex if for eachv,u € §
and0 < A <1lwehave A\v+ (1 —Nu e S.
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Definition 1.2 (Convex Hull). Let S C R™ be an arbitrary set. The set,
n n

conv (S) := {v:v: ZMV?;,VZ‘ eS;\j>0fori=1,--- ,n,Z)\i =1,n> 1}
i=1 i=1

is called the convex hull of S.

Definition 1.3 (Convex Cone). A set K C R™*™ which is closed under
nonnegative multiplication and addition, i.e, U,V € K = A(U +V) € K for
all A > 0, is called a convex cone. A cone is pointed if K N —K = {0}. The dual of
a cone K is defined as:

K*={UeR™™:(U,V)>0, VV €K}
where (., .) stands for the standard inner product, i.e.,

(U, V) =w(UTV) = ujjv;; for U,V € R™",

1]
with u;; denoting the ij" element of the matrix U.

In the above definition tr denotes the trace of the matrix and U” denotes the
transpose of U.

There are three special cases of convex cones which are important with
respect to the material presented in this thesis. These cones are formed by
certain subsets of symmetric matrices. We will define these matrices and the
associated cones. In the definitions below and throughout the thesis &,
denotes the cone of all symmetric m x m matrices.

Definition 1.4 (Positive Semidefinite Matrix). Amatrix ) € S, is called positive
semidefinite ifv/' Qv > 0forallv € R™. The set of all m xm positive semidefinite
matrices defines a cone called the positive semidefinite cone. We will denote this
cone by S;F.

Similarly, Q € S,, is called positive definite if Q € S} and vI'Qv = 0 holds if
and only if v = o, where 0 € R™ is the zero vector. The set of all positive definite
matrices is denoted by S;}*.

Definition 1.5 (Copositive Matrix). A matrix ) € S, is called copositive if
vIiQv > Oforallv € R, The set of all m x m copositive matrices defines a
cone called the copositive cone. We will denote this cone by C,,.
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Definition 1.6 (Completely Positive Matrix). A matrix Q € S, is called
completely positive if there exist a matrix B € R"*", for some n € N, such that
Q = BBT. The set of all m x m completely positive matrices defines a cone
called the completely positive cone. We will denote this cone by C,.

1.3 Cone Programming

In this section we will briefly discuss some results on cone programming. Cone
programming is an important class of mathematical programming. Cone
programming refers to the following pair of primal dual programs,

n
(Conep) max c'x s.t. B — inAi e
xeR™ ;
i=1
where A;, B € §,,,, ¢ € R" and K is a given cone of symmetric m x m matrices.
The dual of the above program can be written as follows:

(Conep) min (B,Y) st (4,Y)=¢, Vi=1l,.,n, Y eK*

In mathematical programming, duality theory plays a crucial role in
formulating optimality conditions and devising solution algorithms. Duality
theory can be further classified into two categories: weak duality and strong
duality. In weak duality we investigate, if the optimal value of the primal
problem is upper bounded by the value of the dual problem. Strong duality
investigates the conditions under which equality holds for optimal values of the
primal problem and the dual problem. (Conep) and (Conep) satisfy weak
duality.

Lemma 1.7 (Weak Duality). Let x and Y be feasible solutions for (Conep) and
(Conep) respectively, then ¢'x < (Y, B).

Proof. We have

c’'x = icmi = imi<Ai,Y> = i x; A, Y) = <Z :BZA“Y>
i=1 i=1

=1

= <B,Y> - <B - zn:l'lA“Y>
1=1

<(B,)Y) O
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In the case of linear programming, i.e. the case, when K = A, where N,
denotes the cone of all m x m symmetric nonnegative matrices, then, whenever
(Conep) or (Conep) are feasible, we have equality in the optimal values, i.e., we
have a zero duality gap. Moreover, if both (Conep) and (Conep) are feasible
then both optimal values are attained. Strong duality does not hold for cone
programming, in general. In the example below and throughout the thesis for a
mathematical program (P), val(P) and F(P) will denote the value and the set
of feasible points for the program (P).

Example 1.8 (Strong Duality May Fail). Consider,

0 00 1 00 010 0
B=|oo0 o|,A=[00 0], 4= 100,c:(2>,

0 01 000 0 0 2

then (Conep) and (Conep) takes the following form,
—xr1 —XI2 0

(Conep) max 2x9 s.t. —z9 0 0 ek

xeR?

0 0 1—21‘2

Y11 Y12 Y13
(Conep) min y33 st. y11 =0,y12+yss=1, YV:=[y12 y2 w3 | €K”
Y13 Y23 Y33

It is clear that for the case K = K* = N3 we have,
val(Conep) = val(Conep) = 0.

It is not difficult to verify that for the case K = K* = S we have val(Conep) = 0
and val(Conep) = 1 even though both problems are feasible.

For the case K = Cs we have (cf. Lemma @,
F(Conep) ={x €R3: 21 < 0,29 <0,21(229 — 1) > 0,1 — 229 > 0}

From this we get val(Conep) = 0. Now take K* = C; and note that the necessary
and sufficient condition for Y € Cj isthatY € S NN, (see (2.8) on page B1).
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Then we get val(Conep) = 1 attained by

000 0 0
C3oY=(010f=|1[(0 1 0)+(0](0 0 1).
001 0 1

For strong duality, in conic programming we need extra conditions on the
constraints. These conditions are normally called constraint qualifications. The
most well-known constraint qualification is the so-called Slater condition. In
the case of (Conep) the Slater condition reads:

Definition 1.9 (Primal Slater Condition). We say that (Conep) satisfies the
Slater condition if there exists x € R” suchthat B — """ | ;4; € int(K).

Here int(K) denotes the interior of the cone K. The Slater condition for the
dual (Conep) can be defined in a similar manner. Note that in the above
example both the primal and the dual do not satisfy the Slater condition. By
assuming that the Slater conditions holds, one can derive a strong duality result
for cone programming.

Theorem 1.10 (Strong Duality). For the primal dual cone programs (Conep) and
(Conep) the following holds.

i. If the primal problem (Conep) satisfies the Slater condition and F(Conep)
is nonempty, then the dual problem (Conep) attains its optimal values and
val(Conep) = val(Conep).

ii. If the dual problem (Conep) satisfies the Slater condition and F(Conep) is
nonempty then the primal problem (Conep) attains its optimal values and
val(Conep) = val(Conep).

Proof. Seee.g. [11]. O

1.3.1 Linear Programming

As mentioned earlier for the case K = N, (Conep) and (Conep) becomes a
linear program (LP). Linear programming is an intensively studied sub-area of
mathematical optimization. There exists a plethora of real world problems
which can be formulated as a linear programming problem (see e.g. [61,
Chapter 2], [68]).

Duality plays an important role in developing algorithms for solving

mathematical optimization problems. Since linear programming has nice
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duality properties, it is no surprise that there exist many state of the art
algorithms for solving linear programs.

The most well known and widely used method is the simplex method
originally developed by Dantzig. Although the simplex method is adopted
widely for solving linear programs, it is well known that the method can take
exponential time in a worst case scenario [[104]. This drawback led to the
search for new algorithms for linear programming with polynomial time
complexity. The real breakthrough in this area came when Khachiyan [101]
published his polynomial time ellipsoidal algorithm. In spite of the promising
polynomial time running time of the ellipsoidal method, it is not suitable for
most applications due to its slow convergence. Another breakthrough came
with the work of Karmarkar [99] on interior point methods, which were proved
to be polynomial with faster convergence guarantees. For details on interior
point methods for solving linear optimization problems the interested reader is
referred to [132].

1.3.2 Semidefinite Programming

The cone program for the special case when K = S} is referred to as
semidefinite program(SDP). Semidefinite programming can be seen as a natural
generalization of linear programming where linear inequalities are replaced by
semidefinitness conditions.

In contrast to linear programming even if all data in the SDP are rational we
can end up in an irrational solution.

Example 1.11. Consider,

(Conep) max x s.t. <2 _:C)E/C
zeR -z 1

then for K = Sy it can be easily verified that the solution isT = val(Conep) = /2
while for K = N3 we have T = 0.

Since a rational SDP (when all input data in SDP are rational) can have an
irrational solution, we cannot hope for an exact polynomial solution method.
However, there exist algorithms which can approximate the solution of SDP to
any fixed precision in polynomial time. The interior point methods of
Karmarkar are generalized to SDP in [6, 5]. The ellipsoidal method of
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Khachiyan is also generalized to SDP, but as in the case of linear programming,
the ellipsoidal method suffers from slow convergence.

SDP has become a very attractive area of research among the optimization
community due to its large applications. The most appealing and useful
application of SDP is the SDP relaxation, which has numerous applications in
combinatorial optimization. Although strong duality does not hold in general
for SDP, in most SDP relaxations of combinatorial optimization problems strong
duality is satisfied (see e.g. [33, 127, 128]).

The most popular SDP relaxation is for the Max-Cut problem. Using a SDP
relaxation along with randomization, Goemans and Williamson [74] has
obtained a 0.878- approximation algorithm for the Max-Cut problem. This was a
major breakthrough for SDP. It has opened a way for the application of SDP in
combinatorial optimization problems. This problem is further discussed
in [130]. The SDP relaxation of the stability number of a graph resulted in the
so-called Lovasz theta number. The theta number has not only provided a
bound on the stability number of the graph but also provided a polynomial time
algorithm for finding the stability number in a so-called perfect graph, for
details see [[110, 120]. The well known spectral bundle methods for the
eigenvalue optimization problem are based on the concept of SDP, for details
see [152]. SDP has been proved very useful for approximating nonlinear
problems. Specifically quadratically constrained quadratic programs(QCQP)
are approximated by the use of SDP relaxations (for details see [4, 9, 148]).
There are many other complex problems for which SDP has provided promising
results, this list of problems includes the satisfiability problem [8, 83],
maximum clique and graph colouring [26, 57, 56], non-convex quadratic
programs [65], graph partitioning [69, 122, 153, [155], nonlinear 0-1
programming [[106, 107], the knapsack problem [86], the travelling salesman
problem [49], the quadratic assignment problem [122, [155], subgraph
matching [136], statistics [[152, Chapter 16 and 17], control theory [[148],
structural design [[152, Chapter 15] and many other areas of science and
engineering. In [[152], a lot of material on theory, methods and applications of
SDP is presented.



10 1.3. CONE PROGRAMMING

1.3.3 Copositive Programming

The cones of positive semidefinite matrices and of nonnegative matrices have the
nice property that both are self dual. In this subsection we will briefly discuss
cone programs over the cone of copositive matrices which is not self dual. Here
we rewrite the cone program for the special case when K = C,,, since it will be
widely discussed throughout the thesis.

T _ A
(COPp) gr;ré%)vi cx st. B ;xZAZ € Cp

(COPp) Yngg:ﬂ (Y, B) st. (YA)=c¢Vi=1,...,n, YeC,,
with ¢ € R" and 4;, B € S,,. We assume throughout that the matrices 4;, i =
1,...,n are linearly independent.

During the last years, copositive programming has attracted much attention
due to the fact that many difficult (NP-hard) quadratic and integer programs
can be reformulated equivalently as copositive programs (COP) (see
e.g. [28, 39, 47, 124, 123]). This reformulation clearly does not make these
intractable problems tractable, but this reformulation can lead to new
approximation guarantees for NP-hard problems as is the case for the standard
quadratic optimization problem (see [28] and Remark 5.15).

From Example , it is clear that strong duality does not hold for copositive
programming in general. In Chapter |5, we will briefly discuss duality in
copositive programming from the viewpoint of linear semi-infinite
programming. In [30], examples of COP are given where either attainability of a
solution fails or there exists a nonzero duality gap.

It is well known that copositive programming is NP-hard. A main problem
lies in checking the membership of a matrix in the cone of copositive matrices.
Note, that it has been established that checking if a matrix is copositive is
co-NP-hard [[117]. Since there cannot exists a polynomial algorithm for solving
copositive programming (assuming P # NP), one has to rely on approximation
methods. There exist roughly three method/algorithms for
solving/approximating copositive programs namely the e-approximation
algorithm [38] and its variations [[143, 158, 157], approximation hierarchy
based methods [28, 47, 120, 154] and feasible descent methods [19]. The
e-approximation algorithm approximates (COPp) while approximation
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hierarchy based methods exist for both (COPp) [28, 47, 120] and
(COPp) [154]. The feasible descent method in [19] approximates (COPp).
The e- approximation algorithm of Bundfuss and Diir is reanalysed as a special
case of a discretization method for semi-infinite programming (see Section [L.4)
in Chapter E For surveys on results and methods for copositive programming
the interested reader is referred to [[18, 30, 58].

1.4 Semi-infinite Programming

In semi-infinite programming, as mentioned before, the objective function is
optimized under an infinite set of constraints. In this section we shall restrict
ourself to linear semi-infinite programming problems (LSIP). One can write
LSIP in the following form,

(SIPp) max c'x st b(z)—a(@)Tx>0 VzeZ,
XeR™

with an infinite compactindex set Z C R and continuous functionsa : Z7 — R"
and b : Z — R. Itis not difficult to show that F(SIPp) is closed.

One can associate different dual problems with (S7Pp). Here we shall use the
so-called Haar dual, which reads as follows,

SIP min b(z) s.t. a(z) =c, y, >0,
( D) o ZGZZQZ (z) ZEZZQZ (z) Yz
where only a finite number of dual variables y,,z € Z (are allowed to) attain
positive values. For the formulation of the Haar dual the interested reader is
referred to [44], while the properties of the Haar dual are discussed in [71].
Note that (SIPp) is feasible if and only if ¢ belongs to the cone generated by
vectors a(z), z € Z, thatis

(SIPp) is feasible if and only if ¢ € cone{a(z) : z € Z} (1.1)

LSIP has been widely applied in many areas of engineering including, but not
limited to: the pattern recognition problem, the maximum likelihood regression
and robust optimization (see [88, 73, 108, 149]).

The duality theory for LSIP is very well studied. In contrast to linear
programming, again, strong duality does not hold in general for LSIP. In order
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to ensure strong duality, as before, we need Slater conditions for LSIP. The
primal and the dual Slater conditions for LSIP are given below.

Definition 1.12 (Slater Condition(LSIP)). The primal Slater condition holds
if there exists x € R" withb(z) — a(z)’x >0 Vze Z (1.2)
We say that the dual Slater condition holds if
c € int(cone{a(z) : z € Z}) (1.3)
We introduce the upper level sets for LSIP,
Fo(SIPp) = {x € F(SIPp):c'x>a}, a € R.

Let S(S1Pp) denote the set of maximizers of (SIPp). Recall that, in general, for
LSIP strong duality need not hold and solutions of (SIPp) and/or (SIPp) need
not exist. However, the following is true for linear SIP (see Theorem for a
corresponding result in cone programming).

Theorem 1.13. We have:
i. Ifeither (1.2) or ({L.3) holds, then val(SIPp) = val(SIPp).
ii. Let F(SIPp) be non-empty. Then

([.3) holds < Vo € R: Fo(SIPp) is compact < () # S(SIPp)is compact.

Thus, if one of these equivalent conditions holds, then a solution of (SIPp)
exists.

A result as in ii. also holds for the dual problem.

Proof. See, e.g., [88, Theorems 6.9, 6.11] and [[1L08, Theorem 4] for the second
equivalence in ii.. O

In the theorem below we will give optimality conditions for LSIP. This requires
the so-called KKT conditions.

Definition 1.14 (Active Index Set). LetX € F(SIPp). Then the active index set
for X denoted by Z(X) is given by,

Z(X)={z€ Z:a(2)"x=0(z)} (1.4)

The set Z(X) is a closed and compact subset of Z.
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Definition 1.15 (KKT Condition). A feasible pointx € F(SIPp) is said to satisfy
the KKT condition if there exist multipliers p1, ..., 1 > 0 and indices z; € Z(X),
j=1,---, ksuch that,

k
Vie X = > 1 Vy(a(z) "X - b(Z;)) = 0
j=1

or equivalently,

k
> nja(z;) =c (1.5)
j=1

The optimality conditions for LSIP are given below,

Theorem 1.16. If a point X € F(S1Pp) satisfies the KKT condition ([L.5) then X
is a (global) maximizer of (SIPp). On the other hand under the conditions ({L.2) a
maximizer X of (S1Pp) must satisfy the KKT conditions.

Proof. See [[108, Theorem 3] and [88, Theorem 2(b)]. O

Although LSIP is a convex program, the existence of a polynomial time
algorithm is not possible for LSIP. The main difficulty lies in checking the
constraint a(z)7X < b(z) for all z € Z. The numerical methods available can be
classified into five main categories: discretization methods, local reduction
method, exchange methods, simplex-like methods and descent methods.

Discretization methods are based on solving a sequence of finite programs.
The sequence of finite programs are solved according to some pre-defined grid
generation scheme or some cutting plane scheme. The method boost for their
global convergence guarantees. Beside the global convergence guarantee,
discretization methods are known to be very slow in practice. Interestingly the
€- approximation algorithm [38] for solving copositive programs can be seen as
a special case of a discretization method. We will discuss this relation in detail
in Chapter 5.

In the local reduction method the original problem is replaced by a locally
equivalent problem with finitely many inequality constraints. The problem can
also be replaced by a system of nonlinear equations with finitely many
unknowns. This system can be solved by Newton's method and hence these
methods may have good convergence results. Reduction based SQP-methods
are one example of these kind of methods.
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The exchange methods can be seen as a compromise between discretization
methods and reduction methods. Hence they are more efficient than
discretization methods. For details see [87, 88, 129].

The simplex-like methods for solving LSIP problems, as the name suggests, are
modifications of the simplex method for linear programming (for details see [7]).

For more details on theory algorithms and applications of LSIP the interested
reader is referred to [72].

1.5 Cone Programming Relaxations of Quadratic
Problems

In this section a brief introduction into cone programming relaxations for
quadratic programs is presented.
We consider the following quadratic program,

(QCQP) min cgu st. wAju+2cfu+b; <0, VjieJ uek

where J := {1,2,--- ,k}, K C R™is a closed convex cone, 4; € S,,,¢c; € R™
and b; € R. If A; ¢ S;} then (QCQP) is not convex. A standard way to make
this program convex is to gather all nonlinearities in one constraint. To do so, we
introduce a matrix U, such that U = uu’ and consider,

u”Aju = (4, uu’) = (4, U).
Then (QCQP) can be equivalently written as,

(4;,U) +2cfu+b; <0, VjeJ

COP) min clu s.t.
(QCQP) w000 U=uu”, uekK

The cone programming relaxation, relaxes the constraint U = uu’ into cone
constraints. To do so, we define the cone of matrices,

T
T
1) (1
K=Y €Smp1: Y =) p (u) <u> ;€ K,p; > 0,7 €N
J

j=1 J

Note that U = uu” can be equivalently written as (1 u7) = () (1" and then

use the relaxation (L 47') € K*. Note also that (4;, U)+2c) u+b; can be written
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T
b; c;

as (Qj, (lll“UT)> where Q; = (cj Aj)
For the cases when K = R™ and K = R'?, we obtain the following SDP and
COP relaxations for (QCQP):

1 T
<Qj,< l;]>>§0,je,]
u
(SDP) min ciu  s.t.
and (

1 u”
+

1 T
<Qj,< “U>>so,jeJ
u
(cor) min clu  s.t.

1 T
and (u l;j) €Chi1

A natural question is to ask how sharp these relaxations can be? We analyse
this question in Chapter E]

1.6 Thesis Outline

The main focus of this thesis is copositive programming and related problems.
In this section an outline of the thesis, with an indication of the main results, is
given.

Chapter [, is a review of results related to set-semidefinite cones. Results on
the copositive cone and its dual, the completely positive cone, are also discussed.
The following are the main (new) results presented in this chapter:

e With the help of an example, it is shown that the well-known Schur
complement for semidefinite matrices cannot be extended to the case of
general set-semidefinite matrices.

¢ Some (known) characterizations of copositivity and complete positivity are
provided.

¢ It is shown that positive diagonally dominant matrices belong to the interior
of the completely positive cone.

The results of Chapter E] and Chapter have appeared in [2] and [1]
respectively, while Chapter B is based on the working paper [3]. The main
results of these chapters are listed below.
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Chapter B mainly deals with the standard quadratic programming problem
(5tQP). The following are the main (new) results discussed in this chapter:

¢ A characterization of strict local maximizers is provided. In the literature, the
characterizations for strict local maximizers are given under the condition
that the candidate maximizer satisfies strict complementarity. Our
characterization does not require this condition.

e We show that standard quadratic programming problem involving
nonsingular matrix for which all principle submatrices are nonsingular has at
least one strict local maximizer.

¢ Results on Lipschitz stability and strong stability of strict local maximizers
with respect to perturbations in the matrix involved are studied. These
results are obtained by applying (known) results of parametric optimization
to the special case of standard quadratic programming.

¢ Itis shown that generically every local maximizer is a strict local maximizer.

* A review of evolutionarily stable strategies is given with an emphasis on the
maximum number of ESS and the relation of ESS with strict local maximizers
of StQP

In Chapter @, we look at the extension of a result which compares the feasible
set of a nonconvex quadratic program and the feasible set of its semidefinite
relaxation. We give an extension of this result for the case of set-semidefinite
relaxations.

In Chapter B, we reformulate a copositive program as a linear semi-infinite
program. The main contributions in this chapter are:

¢ We study COP from the viewpoint of LSIP and rediscuss optimality and duality
results for COP.

e We interpret different approximation schemes for solving COP as a special
case of the discretization method for LSIP. This interpretation leads to
sharper error bounds for the values and solutions of the approximate
programs in dependence on the mesh size. With the help of examples we
illustrate the structure of the original problem and the approximation
schemes.
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¢ The question of order of maximizers for COP is also analysed. It is shown with
the help of examples that for COP maximizers of an arbitrarily high order can

exist.

Publications Underlying This Thesis

e F. AHMED AND G. J. STILL, Quadratic maximization on the unit simplex:
structure, stability, genericity and application in biology, Memorandum 2034,
Department of Applied Mathematics, University of Twente, Enschede,
February 2014. (Chapter 3)

o F. AHMED AND G. STILL, A note on set-semidefinite relaxations of nonconvex
quadratic programs, Journal of Global Optimization, 57 (2013),
pp. 1139--1146. (Chapter 4 and Section 2.1))

e F. AHMED, M. DUR, AND G. STILL, Copositive programming via semi-infinite
optimization, Journal of Optimization Theory and Applications, 159 (2013),
pp. 322--340. (Chapter 5)
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Cones of Matrices

quadratic form is said to be set-semidefinite if it is nonnegative

over some closed cone. It is interesting to study the cone of
matrices associated with such quadratic forms due to their
applicability in many areas including mathematical programming.
In this chapter we will  Dbriefly describe some
results on set-semidefinite matrices. We will give particular
emphasis to a special set-semidefinite cone namely the copositive
cone. We shall describe the cone properties and characterizations
for checking the membership in these cones and their dual cones.

2.1 Set-Semidefinite Cone

The notion of a set-semidefinite cone is a generalization of the positive
semidefinite cone. We will study set-semidefinite relaxations of nonconvex
quadratic programs in Chapter E] Most of the results presented in this section
have appeared in [2].

We start by defining the set-semidefinite cone,

Definition 2.1. For a given closed cone K C R we define the set C,,(K) of
K-semidefinite m x m-matrices and its dual cone C,(K) of K-positive m x m-

19
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matrices as:

Cn(K)={Q €Sy : vVIQv >0V e K} (2.1)
Cr(K)=qU =) ajuuj :a; >0, u; €K (2.2)
J
For K = R™ we obtain the (self-dual) cone S; of positive semidefinite
matrices and for K = R the cones of copositive respectively completely

positive matrices.

The study of nonnegativity of a quadratic form over a convex cone can be
traced back to the work of Cottle et al [46]. Sturm and Zhang have studied the
properties of such cones in detail [145] while algebraic properties of these
cones is the topic of Gowda et al [76].

The cones C,,,(K) and C;,(K) are closed and convex [76]. In the following
lemma we will show that indeed the dual of C,,(K) is given by (2.2).

Lemma 2.2. For any closed set K C R™ the dual of C,,,(K) is C};,(K) as given in

Definition

Proof. We show that with
C:= UZZO&jUjU?iOéjZO,UjGK ,
J

we have C,,,(K) = C*. By using C** = C (for closed convex cones C, see e.g. [67,
Lemma 4.4.1]) we find the identity claimed in the lemma.
"c" IfQ € Cpn(K) then for all U € C we obviously have,

(@ U) = a;(Q,uuf) >0
j

implying Q € C*.
">": Suppose Q ¢ Cn(K),ie,u’'Qu < Oforsomeu € K. ThenforU = uu’ € C
it follows (U, Q) < 0, so that () ¢ C*. O

In linear algebra, the Schur complement plays an important role for developing
properties and characterizations of matrices. For example in developing
copositivity criteria, Viliaho [146] has made use of the Schur's complement. In
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Lemma a generalization of the Schur complement is given. Let in the
following K C R™ be a closed cone.

Lemma 2.3. It holds

v>0, CeCp(K) and
vi(yC —cc)v>0 Wwe Kwithc'v<0.
(2.3)

T
(Z %)ecmﬂ(mxm &

Proof. The left-hand side means:

(v " «Q 2 T T
(av) c o) ly) = +2acVv+V Cv>0 Va>0,ve K .

“=": The above inequality implies y > 0, v'Cv > 0 forallv € K and in the
case c/'v > 0 we are done. In the case ¢/v < 0,7 = 0 we also obtain ¢’v = 0.
For the remaining case ¢’v < 0,y > 0 we write
2 T T 1 T2 LT T
0<~va*+2ac'v+Vv Cv=—(ya+c v) "+ —v (yC —cc')v.
Y Y
(

Then the assumption v* (vC' — ccT)v < 0forsomev € K,c'v < 0leads to a

contradiction (with a choice yaw = —c’'v > 0). The direction <" is easy. O

It is interesting to note that in the special case of positive semidefinite matrices,
the above lemma coincides with the well known Schur complement result,

L vl + T o gt
v €S, & V-vw €8],
v

Unfortunately such a relation is no more true for C;;, (K'). We only have,

Lemma 2.4. LetV € S,,,v € K besuchthatV — v’ € C*,(K). Then also
1 vl .
<V V> 6Cm+1(R+><K).

Proof. By definition, the matrix V — vv! € C¥ (K) can be written in the form

k
V—w'=> Nuul with); >0, weK, j=1,... k.
j=1
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So, the decomposition

V-G () ()

holds and recalling v € K, this matrix is an element of C;; | (R} x K). O

The converse of Lemma @ is not true in general (if K # R™). Consider the
following example,

Example 2.5. Take the copositive case, i.e., K = R"*, m = 2, and choose,

V= <(2) g) v=(1,1)7T

Then,
T A 1\ "
<v V>:2 0-(0 +3 2-12] €Chi(Ry xRY)
2 2 0 0

but V —wl = (1 3') ¢ Cx,(R), since a necessary condition for Q € C;, (as is

clear from (2.2)) is that Q € N,

Now we will consider a generalization of the set-semidefinite cone. For a
closed convex cone K and a fixed o € R we consider:

Crn(K, ) == {Q € Sy : vI Qv — av” diag(Q) > 0,Vv € K} (2.4)

where diag(A) € R™ is the vector of the diagonal elements of the matrix
A € S, ie, diag(4) = (a11,.--,amm)’. In the sequel Diag(u) denotes the
matrix with u € R on the main diagonal while all other elements are zero. In
order to construct the dual of C,(K,a), notice the relation
vl diag(Q) = (Q,Diag(v)), and find:

viQv — av! diag(Q) = (Q, vv! — a Diag(v))
Then by construction the dual of C,,, (K, o) will be:

Cr(K,a) == U =Y Xj(uu] — aDiag(u;)): \; >0,u; € K
J
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It is easily shown, as in the proof of Lemma @, that the cones
Cm(K,a),C) (K, ) are dual to each other.

Note that the set-semidefinite cones C,,(K) and C;,(K) are the special
instances of C,, (K, ) and C};, (K, o) respectively for the case when o = 0.

2.2 Copositive Cone

In this section we will describe a special type of a set-semidefinite cone namely
the copositive cone. Recall from Definition [L.5that a matrix Q) € S, is copositive
ifand only if v/'Qv > O forallv € R’". The set of all m x m copositive matrices
forms a closed, convex, full dimensional and non polyhedral cone [37]. In this
section we will confine ourself to the relation between copositivity and positive
semidefiniteness, characterizations of copositivity and finally some words on the
interior and extreme rays of the copositive cone.

The copositive matrices were introduced in 1952 by Motzkin [114]. Since
then these matrices caught attention of researchers. Much work has been done
on extending results on positive semidefinite matrices to copositive matrices.
Copositivity has vast applications in different areas of science and engineering.
For an overview of these applications the interested reader is referred to [[18]
and the references therein.

2.2.1 Copositivity and Positive Semidefiniteness

In this subsection we will discuss the relations between copositivity and
positive semidefiniteness. From the definition of copositive matrices, it is clear
that every positive semidefinite matrix is also copositive, but the converse is
not true in general. For example, the matrix (% é) is clearly copositive but not
positive semidefinite. We will describe special cases where the two classes
coincide. We start with the following lemma which says that every matrix with
non-positive off-diagonal entries is copositive if and only if it is positive

semidefinite. In the following R, denote the set of positive real numbers.

Lemma 2.6 ([96]). Let Q € S,, and all off-diagonal entries of () are non-positive
(¢;; < 0 foralli # j) then Q is copositive if and only if it is positive semidefinite.

Proof. 1f Q € S}, then the lemma is obvious. For the converse suppose that ) €
Crm, then for allv € R7,vI'Qv > 0, also for u = —v,u”Qu > 0. Now suppose
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thatv € R has atleast one zero, one positive and one negative component, then

. T . . .
considerv= (0 u w)",where oisazero vector of dimension ¢,u € R% and
o AS ]RT;t_s. Partition the matrix ) such that

Qu Q12 Qi3
Q=10 Qn Qs

13 Qf Qs

where (11 is the ¢ x t matrix, Q12 is the ¢ x s matrix, Q13 is the ¢t x (m — s — t)
matrix, Q22 is the s x s matrix, Q23 is the s x (m — s — t) matrix and Q33 is the
(m—s—t)x (m—s—t) matrix. Note that Q23w > o since both 23 is non-positive
and w is negative. Hence we have,

v Qv = u’ Qru+2u” Q3w + W Q33w > 0
—_—— ——

>0 >0

The case when v does not contain a zero entry can be proved similarly. So for all
v € R™,vI'Qv > 0. Hence the matrix is positive semidefinite. ]

Semidefinite matrices are normally characterized by their eigenvalues since it
is well known that a matrix is positive semidefinite if and only if all its
eigenvalues are nonnegative. As one can already see from the above discussion,
copositive matrices may have negative eigenvalues. Now the question arises
how many negative eigenvalues a copositive matrix can have? The following
example provides an answer to the question,

Example 2.7. Let Q := (1 + 5)E — el € S, for some ¢ > 0, small, where

E € S, is the matrix of ones while I € S,, is the identity matrix. Clearly for

0 <e < 75, Q is copositive since it is nonnegative. Moreover, m is an eigenvalue

of Q) since Qe = me, where e is the vector of ones. Also —¢ is an eigenvalue with

multiplicity m — 1 since Q (3}) = —e(3}) fori = 1,--- ,m — 1 and the set
{(2}),i=1,---,m — 1} islinearly independent, where e; are the unit vectors of
length m — 1.

2.2.2 Characterization of Copositivity

In the literature, there exist several characterizations of copositivity. These
characterizations are based on determinants of submatrices, on a solution of an
associated system of equations or on exploiting the structure of the matrix. In
this subsection we will start with a simple necessary condition for copositivity.
Here and throughout the thesis we shall take / := {1,--- ,m}.
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Lemma 2.8. LetQ € C,,, then q;; > 0 foralli € U.

Proof. Let(@ € Cy,. Then fore; € R™*,i € U we have ¢;; = e;fFQei > 0. O

Itis clear from Example @ that copositivity cannot be completely characterized
with the help of nonnegative eigenvalues. But a partial characterization can be
obtained by relating the number of positive eigenvalues with the copositivity of
principal submatrices of certain order.

Theorem 2.9. Suppose that a matrix (Q € Sy, has p positive eigenvalues, p < m.
Then Q) is copositive if and only if all the principal submatrix of order p+ 1 and less
are copositive.

Proof. See [96, Theorem 4.16]. O

In the following lemma, we will provide conditions, for copositivity, for
matrices of order two and three and refer the interested reader to [121], for the
case of order four matrices.

Lemma 2.10. The following holds,

i. Q) € Sy iscopositive if and only if,
qi1 2 0,922 > 0,q12 + \/q11g22 = 0
ii. Q) € Ssis copositive if and only if,

q11 = 0,q22 > 0,933 > 0
A= qi2+ Vaige2 > 0, B := qu3 + /quidss > 0,C = go3 + \/g22033 > 0
V1022833 + q12/333 + 13/ @22 + @e3/q1 + V2V ABC > 0

Proof. See [[78, P2]. O

A criterion for determining copositivity based on the structure of the principal
submatrices is developed by Keller and appeared in [45]. This criterion uses
the cofactors of the matrix.

Definition 2.11 (Cofactor and Adjoint of the Matrix). Let Q¥ denote the matrix
obtained from Q after deleting the i*" row of Q and the j*" column of Q, then the
i7" cofactor of Q ,denoted by Cij, is given by,

Cij = (=1)" det(QV) .
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The transpose of the matrix of all cofactors, denoted by adj(Q), is called adjoint
of Q,i.e, (adj(Q))i; = Cji- The adjoint of a matrix () is related to the determinant
and the inverse of the matrix by the following identity,

Q= adj(@) or det(Q)I = Qadj(Q).

1
det(Q)

First we consider two simple lemmas.
Lemma 2.12 ([93]). LetQ € Cy,, andletv € R7". Then v Qv = 0 implies Qv > 0.
Proof. Let @ € Cy,. Then for A > 0 we have v + Ae; € R, and thus,

0 < (v+ X&) Qv+ Aey) = 2Xe] Qv + N2e] Qe; = 2XM(QV); + Mgy
By dividing by A > 0 and letting A — 0, we obtain

e; Qv = (Qv); > 0.
This holds for every ¢ € U. O

Lemma 2.13 ([146]). Let Q € C,, and det(Q) # 0, then the inverse of () cannot
contain a non-positive column.

Proof. Let B = Q! and let some column say b; be non-positive. Take v = —b;,
i.e,v € R7, whichimplies Qv = —Qb; = —e; (since b; is the i*" column of Q7 1).
Hence we get

viQv = —b;(-Qb;) = —b;(—e;) = b;; < 0.

Since (@ is copositive equality holds in the above relation, i.e., VTQV = 0, which
contradicts the results given in Lemma (since (Qv); < 0). O

Note that if @ € C,, then all principal submatrices are copositive. The next
result enables us to determine when a matrix is not copositive given that
certain principal submatrices are copositive. Here and in the rest of the thesis,
for a matrix @Q € S, and an index set J C {1,2,...,m}, Q; will denote the
principal submatrix obtained after deleting the rows and the columns of the
matrix ) not corresponding to the elements of the index set J, i.e,
Q. € RYIXII and (Q1)ij = gij foralli,j € J where (Q);; is the ijt" element
of the matrix @ ;.

Theorem 2.14 ([45, Theorem 3.1]). Let Q € S,, and let all principal submatrices

of Q of order up to m — 1 be copositive. Then Q ¢ C,, if and only if adj(Q) € N,
and det(Q) < 0.
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Proof. For a proof see [45, Theorem 3.1]. O

The following theorem is stated in [45]. Here we will include a proof for the
sake of completeness.

Theorem 2.15 (Keller [45]). A matrix Q € S,, is copositive if and only if each
principal submatrix Q y for which all cofactors of the last row are nonnegative has
nonnegative determinant. This includes for |.J| = 1 the condition q;; > 0, € U.

Proof. Suppose that Q € C,,, then each principal submatrix of ) is also
copositive. So it is sufficient to show that if the cofactors of the last row of () are
nonnegative then the determinant is also nonnegative. It is not difficult to verify
that v = adj(Q)e,, gives the cofactors of the last row. Since the cofactors of the
last row are nonnegative v is nonnegative. We find,

viQv = (adj(Q)em)” Q (adj(Q)em)
= e}, adj(Q)Q adj(Q)en,
= det(Q)er, adj(Q)em = det(Q){adj(Q) bm > 0.

Since {adj(®)}mm is nonnegative the only possibility when det(Q) can be
negative is when {adj(Q)}mm = 0. Since the cofactors of the last row are
nonnegative this implies that the last column in adj(@) is nonnegative. Hence if
det(Q) < 0, then we will get a non-positive column in Q! which is a
contradiction to Lemma .

For the converse suppose that each principle submatrix ); for which all
cofactors of last row are nonnegative have nonnegative determinant. In order
to show that @ € C,, holds we will use induction with respect to m.

We start the induction with m = 1, where the assumption yields ¢1; > 0.

For the induction step we suppose that all principal submatrices of order k£ <
m — 1 are copositive. Now for k = m we have two conditions:

i. each principal submatrix @)y for which all cofactors of the last row are
nonnegative have nonnegative determinant.

ii. all the principal submatrices of order m — 1 are copositive.

Suppose now that ii. holds and the matrix @ is not copositive, i.e., Q ¢ C,,. Then
from Theorem R.14, we have adj(Q) € N, and det(Q) < 0. But this is a clear
contradiction to ¢. above. This concludes the proof. O

The characterization above suggests to check copositivity with the help of the
computation of the determinants of all 2™ — 1 principal submatrices, which is
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not computationally efficient. For the special case of tridiagonal matrices
however this characterization led to a polynomial time algorithm for testing
copositivity, see [[126, Corollary 1].

The following theorem gives an alternative characterization for copositivity
which relies on the solution of a system of inequalities for each principal
submatrix instead of calculating the determinants of each submatrix.

Theorem 2.16 (Gaddum [66]). Let Q € S,,. Then Q is copositive if and only if
forall J C {1,2,...,m}, the following system has a solution,

QJVJEO VJZO elTJ‘szl. (25)
Here v is the subvector such that vy := (v; : j € J).

Proof. For a simple proof see [48, Theorem 1]. O

2.2.3 Interior and Extreme Rays

The notions of interior and extreme rays of a cone helps to understand the
geometry of the cone which in turn is useful for characterizations. Before
proceeding further, we define what is meant by an extreme ray of a cone.

Definition 2.17 (Extreme Ray). Let K be a closed, pointed and full dimensional
convex cone. Then the ray generated by U € K\{O} is defined to be the set
{aU : a > 0}. Moreover, U € K\{O} defines an extreme ray of K if

U,,Uoe K, U=U,4+U;, = Ul,UQE{OéUZOéZO}
Ext(K') will denote the set of elements of K which generate extreme rays.

In the above definition and in the rest of the thesis O denotes the zero matrix
of appropriate dimension. A general characterization of the extreme rays of the
copositive cone is unknown. But there exists partial results. These results are
summarized below.

Theorem 2.18. For m > 2 the following holds,
I a(eie]T + ejel’) € Ext(Cy,), wherei, j =1,---m,a >0
ii. cc’' € Ext(C,,) where ¢ € R™\(R7 U (—R™))

iii. PDQDP € Ext(Cp,) if and only if Q) € Ext(C,,), where P is a permutation
matrix and D is a diagonal matrix with d;; > 0 for all 1.
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Proof. For a proof see [52, 82]. O

Moreover the extreme rays of the set of copositive matrices {Q = (¢;;) € Cp, :
gij € {-1,0,1},¢;; = 1, V 4,7} are discussed in [93]. In the case of 5 x 5
matrices a complete characterization of extreme rays of Cs is provided by [89].
But it is still an open question whether there is an explicit characterization of
the extreme rays of the copositive cone in general.

For the copositive cone it is well known that the interior consists of the set
C,\. of so-called strictly copositive matrices (see e.g. [37, Lemma 2.3],[12,
Chapter 1, Section 2]) defined by,

Ct={Q €Cp:v'Qv=0impliesv= o}, (2.6)

that is Cf, = int(Cp,).

As mentioned earlier the set of all positive semidefinite matrices forms a cone
which is contained in the cone of copositive matrices, i.e., S$ C Cy,. The set of
all nonnegative matrices, denoted by N,,,, is also contained in C,,. So clearly also
Npm+S;E C Cp holds. Form < 4thisinclusion turns into an equality [50], but for
m > 5 the inclusion is strict. The following is the well known counter example.

Example 2.19 ([50, 58]). Consider the so-called Horn-matrix [50],

Letv € R’.. We can write,

vIiHv = (v1 — vo 4 v3 + Vg — v5)? + dvovy + 4duz(vs — v4)

= (v1 — va +v3 — v + v5)? + dvous + vy (v — v5)

If vs > wy then VI Hv > 0 follows from the first expression. If vs < vy then
vl Hv > 0is obtained from the second expression. Note that H ¢ S;}, and H ¢ N,,,.
Moreover, the matrix H cannot be decomposed as the sum of a nonnegative and a
positive semidefinite matrix. This follows from S}, C Cp,, Ny, € C,y, and the fact
that the matrix H is in Ext(Cs)(cf. [93]).

In view of N}, + S, C Cpy, it is interesting to know the relationship between
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N, + S, and the interior of the copositive cone. It is well known that neither
int(Cp,) C Ny, + S, nor int(Cp,) 2 N + S; holds true.

1 1 1 0 01
Q'_<1 o)‘(o 0)+<1 0)
S——

S EN>

Example 2.20.

but the matrix is not in the interior of the copositive cone since e3 Qes = 0.

For recent results and a discussion on the geometry of the copositive cone we
refer the interested reader to [52] and the references therein.

2.3 Completely Positive Cone

In this section we will briefly consider the completely positive cone. Here, we
will confine ourself to a characterization of complete positivity of a matrix and
known results on the cp-rank. The last subsection will describe some results on
the extreme rays and the interior of the completely positive cone. The set of all
m x m completely positive matrices generate a closed, convex, non polyhedral
and full dimensional cone. Recall that it is called the cone of completely positive
matrices and denoted by C;, (cf. Definition @). The matrices in C}, can also be
written as a sum of diadic products of rank one matrices,

N
c:n:{Aegm;A:Zbkb}fwithbkeRm,NeN} (2.7)
k=1

It is interesting to note that the span of the columns of the matrix A coincides
with the span of the decomposition vectors b;.
Lemma 2.21 ([13]). Let A € C%, and A= BBT = 3% b;b! then
Span{ai,--- ,a,,} = Span{by,--- , by}
whereay,--- ,a, and by, - - by are the columns of A and B respectively.

Recall that the copositive cone and the completely positive cone are dual to
each other (in Lemma 2.2, put K = R™).
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A necessary condition for a matrix to be completely positive is that the matrix
should be nonnegative and positive semidefinite. The set of all nonnegative
positive semidefinite matrices is known as the set of doubly nonnegative
matrices and denoted by DN N,,, := S N N,,. For m < 4 it is well known
that (see [13]),

AecC,, ifandonlyif A€ DNN,,. (2.8)

Hence checking if a matrix of order four or less is completely positive amounts
to checking if the matrix is nonnegative and positive semidefinite. But for the
matrices of order greater than four this is not true in general,

Example 2.22.

N

Il
= O Ol =
O ONI= =Nl
O BIW R N- O
D= =R O O
= O ON-

It is clear that A € Ny, also A € S}, since,

2 2
viAv = lvl + vy + 1v + lvl + 1114 +wv
2 2" 212 >

1 11 2+5( o)
5 V1 21)3 21)4 3 V3 V4

But A is not completely positive, since (A, H) = —%, where H € Cy is the Horn

matrix given in Example (cf. Definition [13]

Testing if a matrix is completely positive is an NP-hard problem [51]. But for
some classes of matrices checking complete positivity is easy. For example
every diagonally dominant matrix (see Definition 2.30)) is well known to be
completely positive [[13, Theorem 2.5](see also (@)). Another example is the
class of binary matrices which are completely positive if and only if they are
positive semidefinite [[107, Corollary 1]. For certain specially structured sparse
matrices Dickinson and Diir have been able to formulate a linear time algorithm
for testing complete positivity [54].

The following characterization of completely positive matrices is recursive, in
the sense that it depends on the complete positivity of smaller matrices along
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with some other conditions (see Lemma R.3 for the corresponding result for
copositive matrices).

Theorem 2.23. Let A € S, be written in block form,

a v
=)
then A is completely positive if and only if V = CC" for some C € Rﬁn_l)xn (ie.

V is completely positive) and there exists a nonnegative vector w such thatv = Cw

and a = wi'w.

Proof. See [13, Theorem 2.16]. O

The smallest value of N for which the factorization (@) of the matrix A is
possible is called the CP-rank of the matrix and denoted by C' P-rank(A).

By Lemma the CP-rank of a completely positive matrix is always greater
than or equal to the rank of the matrix. For the case of matrices of order three or
less the CP-rank is exactly equal to the rank of the matrix [[13, Theorem 3.2]. For
general m x m matrices the following is known about the CP-rank.

Theorem 2.24. Let A € C}, and r := rank(A),

i. ifr > 2 then it holds:

r(r+1) .

CP-rank(A) <

ii. if r > 1 and there exists a nonsingular r x r principal submatrix of A with N
zeros above the diagonal, then

r+1)

CP-rank(A) < r( 5~ N

Proof. For a proof of i. see, [13, Theorem 3.4] or [84, 138], for a proof of .
see [[138] or [[13, Theorem 3.5]. O

For recent results on CP-rank of a completely positive matrix the interested
reader is referred to [[139, Corollary 5.1].

In [55], the following bound on the CP-rank of completely positive matrices
is conjectured.

2

Conjecture 2.25. If A € C},, m > 4 then CP-rank(A) < {%J

m
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Definition 2.26 (M-Matrix). Let A € R™*"™ then A is called an M-matrix if A
can be expressed in the form A = sI — B, where B = (b;;) with b;; > 0, for all
1 <14,5 <m,and s > p(B), the maximum of the moduli of the eigenvalues of B.

Definition 2.27 (Comparison Matrix). Let A € R”*™ and,

(M), = {'“”" A

—lai;| otherwise

then M (A) is called the comparison matrix of A.

If the comparison matrix of an A € N,, is an M-matrix then C P-rank(A) <
{mTQJ (for details see [55]). The Conjecture is also proved for the matrices
associated with the so-called cycle free completely positive graphs [[13]. A proof
of the Conjecture for the case of 5 x 5 matrices is given in [[140]. Moreover
note that, for every even m there exists a matrix with CP-rank ng as the following
proposition, taken from [97], suggests,

Proposition 2.28 ([97]). For any even m = 2n there exists an m x m matrix with
CP-rank L%QJ

Proof. Let E be the n x n all-one matrix, [ is the n x n identity matrix and e; is
its it" column. Then consider the matrix,

nl F
A= (E nI)

The matrix A has a factorization,

n T
€; €;
4= Z (%‘) <€j>
i,j=1

Clearly the above decomposition contains n? = %2 matrices. Note that any

T
vector in a decomposition A = Z?j:l <£’;) (E;) of the matrix A will be of
the form (2), b, ¢ € R’} such that at most one element of b and of ¢ is positive.
Otherwise A would have a nonzero element a;;,7 # j,i,j5 € {1,...,n} or
i,7 € {n+1,...,m}. So the decomposition given above is minimal, that is

CP-rank(A) = n2. O
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Note that for the matrix A in the above proposition M (A) is an M-matrix since,

S i B P B e

Moreover it can be easily verified that n is the largest eigenvalue of (g g ) It
has been recently proven that Conjecture is false for matrices of order from
seven to eleven, for details see [31].

2.3.1 Interior and Extreme Rays

In this subsection we will briefly survey results on the interior and extreme rays
of the completely positive cone. We will provide characterizations of the interior
of the completely positive cone. We will also prove that every positive diagonally
dominant matrix belongs to the interior of the completely positive cone.

In contrast to the copositive cone, an easy characterization for the interior of
the completely positive cone C, is not known. However, from C}, C S;t N A,
we have,

int(C},) C int(S;}) Nint(Ny,)

So a necessary condition for a matrix A € C;, to be in the interior of the
completely positive cone is that the matrix A is positive definite, i.e, A € S,/ .

Dir and Still [59] have given a characterization of the interior of the
completely positive cone. Dickinson [53] has added other characterizations.
Here are these results.

Theorem 2.29. The interior of the completely positive cone is given by,

N b, cR'VEk=1,---,N
> bbbl by eRT, VE=1,---,m
k=1 Span{by,--- ,by} =R"™

int(C,)

_ ibka’ by €R™, by eRPV k=2 N
k=1 " Span{blv"'abN}:Rm
whereRT :={becR™:b;>0,Vi=1,...,m}

Proof. For a proof see [59] and [53]. O
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The characterization given in Theorem provides a way to check if a matrix
is in the interior of the completely positive cone or not. However this requires
a completely positive matrix to be decomposed in a certain way. Recently Zhou
and Fan [[156] have presented an algorithm which when applied to a completely
positive matrix A € C;, returns the decomposition of the matrix in the form
given in Theorem P.29, if the matrix A € int(C).

Here we will consider some matrices which belong to the interior of the
completely positive cone. As a first example consider the matrix A = I + bb”,
where b is a positive vector. Then clearly A is completely positive. Take,

A/ bT —
t = w’ then

bT'b

A = (I +tbb?)(I +tbb”)T =T 4 (2t + t*b"b)bb” = I + bb”

Since rank(A) = m, and there are m columns in the matrix (I + tbb”), it follows
CP-rank(A) = m [138] and by Theorem A € int(C)).

Before presenting our next example we shall define the set of diagonally
dominant matrices.

Definition 2.30 (Diagonally Dominant). Let A = (a;;) € Sy, and

u; = lag| — Z |agj]

=LA

then if u; > 0 for all ¢ € U the matrix is called diagonally dominant.

It is well known that every nonnegative diagonally dominant matrix is
completely positive. Indeed it is not difficult to verify that such a matrix can be
decomposed as follows (see also [100]),

m m

A= Z wieiel + Z aij(ei +ej)(e; +e)T . (2.9)
i=1 i=1,j=i+1

In the next theorem we will show that every positive diagonally dominant matrix

belongs to the interior of the completely positive cone. Note that the positive

diagonally dominant matrices of order two may be singular. Take for example the

matrix (} 1). But for matrices of order m > 2, the positive diagonally dominant

matrices are always nonsingular.
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Lemma 2.31. Let A € S,,,, m > 2, be diagonally dominant and positive, then A is
nonsingular.

Proof. Itis well known that a diagonally dominant matrix with atleastone ¢ € U
such that u; > 0, is nonsingular (see e.g. [94, Corollary 7.2.3]). Now consider the
case when u; = O forall i € i/ and let s < a;; < [. Then the following bounds on
the eigenvalues of A are provided in [90, Lemma 7.1]:

(m—=2)s< X\ <(m—2)lfor1 <i<m-—1, and 2(m—1)s < \,;,, <2(m—1)I.
Hence A is nonsingular. O

Theorem 2.32. Let A € S,,,, m > 2, be diagonally dominant and positive, then
A € int(Cy)).

Proof. In view of Lemma it is clear that A is of full rank. Let us consider
[ := min{1, min; j—1 m{a;;}} and defineb = [I,--- , 1|7, then it is not difficult to
seethat B := A—bb” isnonnegative. Now we will show that B is also diagonally
dominant.

i — Y bij=ag— 1= (ai; — 17
i#i i#

= a; — Zaw —2l2>0
i#]

Hence B is diagonally dominant and a decomposition of A is given by

A=bbT + Z (bii — Z bij)eieiT + Z bi]’(ei + ej)(ei + ej)T

i=1 i£] j>i
Since b € R, , by Theorem A € int(Cy)). O

Here we would like to mention that the proof of Theorem is independently
obtained by [139, Theorem 2.2]. The following is an immediate corollary of the
above theorem.

Corollary 2.33. Let A € N,, be positive and let its comparison matrix, M (A), be
an M-matrix then, A € int(C}).

Proof. 1t is well known that if M (A) is an M-matrix then there exists a positive
diagonal matrix D such that DAD is diagonally dominant (see e.g. [55, page
305]). Since D is positive, so is DAD. Let DAD = BB such that B € R7"
has at least one positive column. Note that such a decomposition exists owing
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to Theorem R.32. Then clearly A = D 'B(D~'B)T will have at least one
column positive, and by Theorem A € int(Cy)). O

The extreme rays of the completely positive cone are very well known and
described below.

Lemma 2.34. The extreme rays of the cone C;;, are the rank one matrices U = uu?,
whereu € R,

Proof. See e.g. [82, Theorem 3.1 ]. O
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The Standard Quadratic Programming
Problem

N the optimization literature quadratic programming (QP)
I normally refers to the set of problems with linear constraint(s)
and quadratic objective function. In this chapter we will focus on a
special instance of QP namely the standard quadratic programming
problem (StQP). Our special interest in this program stems from the
fact that it just represents the feasibility test in copositive
programming. In sections two and three we will provide optimality
conditions and a stability analysis for StQP, respectively. The notion
of strict local maximizer of StQP is related, as we will see, to the
concept of evolutionarily stable strategies (ESS) from population
genetics. In section four we will provide a brief survey of
evolutionarily stable strategies while focusing on the maximum
number of ESS which can coexist for a certain matrix. The fifth
section deals with vector iterations which are related to StQP and a
similar program. In the last section we will look at some genericity
results for the strict local maximizers of StQP.

39
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3.1 Introduction

The standard quadratic programming problem can be written in the following
form,

m
(StQP) max gq(v):= évTQv st. veA, = {v e R : ZU" = 1} .
i=1
where ) € §;,,. Standard quadratic programming is very well studied due to its
vast applications in the areas of resource allocation problems [95], portfolio
optimization problems [111], maximum weight clique problem [70, 115] and
population genetics [35]. StQP is known to be NP-hard [[115, [150]. In Bomze et
al [29] a good survey of algorithms/methods for solving/approximating StQP is
provided. There has been much work done on theory and algorithms for StQP
(see e.g. [25]). However, the question of stability of StQP is not answered
satisfactorily in the literature. In this chapter we will provide a stability
analysis for StQP along with a characterization for a point to be a strict local
maximizer, a review on evolutionarily stable strategy, vector iterations related
to StQP and some genericity results.

Before proceeding further, note that (StQP) can be used to formulate the
feasibility criteria for programs over the cone of copositive matrices. In order to
see this consider the copositive program in subsection where it is
required to check if the matrix F'(x) € S,, is copositive. This can be done by
solving (StQP) with ) := —F(x) and checking if val(StQ P) is non-positive.

3.2 Optimality Conditions

In this section the second order necessary and sufficient conditions for strict
local maximizers of (St(Q)P) are formulated. For this purpose first we define the
Lagrange function associated with (StQP),

L(v, A, p) = q(v) = MeTv — 1) + uTv
where A € R, i € R'?". Then the KKT conditions for v € A, read,

VoL(V, A\ ) = Qv —Xe+ > pie; =0, p; >0, (3.1)
1Z€R(V)
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where R(v) is the support of the vector v defined below,

Definition 3.1 (Support of a Vector). Letv € R'?, then
R(v) :={i:v; > 0}. (3.2)

Note that the constraints in (StQP) are linear and the so called linear
independence constraint qualification (see e.g. [63, page 280]) is satisfied
implying that the Lagrange multipliers are uniquely determined. Let v, A, i
satisfy the KKT conditions (El]) then as usual v, is said to satisfy strict
complementarity if v; = 0 implies p; > 0. Define also for v, i satisfying the KKT
conditions,

SW) :={i:p =0} (3.3)

then clearly we have R(V) C S(V). Moreover, strict complementarity is
equivalent to R(V) = S(¥).

A vector d € R™ is said to be a feasible direction with respect to a feasible
point v if there exists « > 0 such that v 4 ad is also feasible. The conditions for
optimality in nonlinear programming are generally described in terms of
feasible directions or more precisely with the help of the cone of critical
directions [63, Theorem 12.6]. For (StQ)P) the cone of critical directions can be
written as follows,

CW):={deR™: (QV)Td>0,eTd=0,d; >0Vi ¢ R(V)} (3.4)
Remark 3.2. Letv € A, € R} satisfy the KKT conditions (B.) and letd e
C(V), then

T
0< (QV)Td = | e — Z i €; Z wid;
iZR(V 1ZR(V
== > di— > pd;
ig¢S(v) i€S(V)\R(V)
=— Z wid; <0
i€S(v)

Since p; > 0 forall i g§(v) and d; > 0 foralli ¢ S(¥) (d; > 0 foralli ¢ R(V)
implies d; > 0 fori ¢ S(V) ) ,hence from the above we conclude that d; = 0 for all
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i ¢ S(¥V). So for a KKT pointV € A,, the cone of critical direction (B.4) reduces to,
CW) :={deR™:e’d=0,d; =0Vi ¢ S(¥),d; >0Vie SF®\R¥)} (3.5)

We also define the order of maximizer for (StQP),

Definition 3.3 (Order of Maximizer). A feasible pointVv € A,, is a maximizer of
(StQP) of order p > 0, if with some v > 0, > 0 the following holds,

4(¥) > qvV) + AV —V|F VveEA,, [v-v]<e. (3.6)

In the above definition ||.|| denotes the Euclidean norm. Define also for e > 0,
the e-neighbourhood of the point Vv € R by N(V) := {ve R" : [[v—-V|| <&}

Although in the general case of nonlinear programming there is a gap
between necessary and sufficient optimality conditions, for the case of (StQP)
there is no gap,

Theorem 3.4. Letv € A,, then,

i. V is a strict local maximizer of (StQP) if and only if V satisfies the KKT
conditions (B.1l) and d”Qd < 0 for all d € C(v)\{o}.

ii. Vis a local maximizer of (StQP) if and only if V satisfies the KKT conditions
(B.1) and d”Qd < 0 foralld € C(V).

iii. IfVis a strict local maximizer of (StQ P) then with some v, > 0 we have,
qV) —q(v) > A|[v=¥|* YveN.(V)NA,
that is, V is also a strict local maximizer of order two.

Proof. i. = Let V be a strict local maximizer. For the sake of contradiction we
assume that there exists a0 # d € C(V) such that d”Qd > 0. Now for a small
« > 0,itis clear thatv + ad € A,, then

V+ad)TQV+ ad) — v Qv = 2av7 Qd + o?dTQd
>a?dTQd > 0.

This holds since d € C(V) implies v'Qd > 0. Since @ > 0, we arrive at a
contradiction that Vv is not a strict local maximizer.

< We directly prove that the condition d” Qd < 0, for all 0 # d € C(V) implies
that V is a strict local maximizers of order two (see iii.). So letd”Qd < 0 for all
o0 #d € C(V) butassume Vv € A,, is not a strict local maximizer of order two.
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Then there exists an infinite sequence of feasible points v, — V satisfyingvy, £ v
and,

q(vi) — q(¥) > o (||lvi — V||%).

Now we write v, = V+t,d; whered, € R™,||dg|| = 1,tx > 0, — Oasvy — V.
The sequence dj, has a subsequence converging to some vector d, ||d|| = 1, i.e.,
withoutloss of generality d;, — d. The existence of such a subsequence is evident
since dj, forms a sequence in the compact set of all vectors with unit norm. First
we will show that d € C(V). For this we consider

o (t}) < q(vi) — q(v) = t(QV)"di + %tid{@dk . (3.7)

Divide (B.7) by ¢, and take k — oo to arrive at (Qv)"d > 0. Note that from
Vi € Ay and 0 < (vg); = v; + (dg);, we can conclude that (dg); > 0 for all
i ¢ R(V). Notealso thatvy, € A,, impliese’v, = e’ (V+t,d;) = 1ande’d; = 0.
For k — oo this leads to e”'d = 0. Hence we can conclude thatd € C(v).

From (B.7), the KKT conditions and the observation that (dg); > Oforalli ¢
R(v) and ;1 € R’} we obtain, ZKF,R(V) wi(dg); > 0. So we have,

_ 1
o(t7) < ti(QV)"dy + §tzd;€Qdk
T 1
=1 </\e — Z ui@) dk + itzdedk
i¢R(V)
1
= —tk Z /J,l(dk)z+§tzdedk
i¢R(V)

—_——
>0

X >
< §tzd}§Qdk
Dividing by ti and letting k£ — oo gives,
d’Qd >0

leading to a contradiction to the hypothesis and this also proves i:.
ii. Can be proven in a similar way:. O

Here we would like to mention that, in the literature ( see e.g. [20, 22, 23, 24,
27]), the characterization for a strict local maximizer of StQP requires that strict
complementarity holds while the characterization given in Theorem @ does
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not impose such a condition.

In the literature the cone of critical directions is used for second order
conditions.  Second order necessary and sufficient conditions are also
formulated in terms of so called Tangent spaces. Letv € A, satisfy the KKT
conditions (El]), then for the case of (StQ P) the tangent spaces are given by,

TW):={dcR™:efd=0,d; =0 Vi¢ R(V)} (3.8)
THW):={deR™:e'd=0,d; =0 Vi¢ S@)}. (3.9)

It can be readily verified that T(v) C C(v) C T7(V). Moreover if strict
complementarity holds at the KKT point v then the three cones are equal.

Corollary 3.5 ([24]). Let v € Ay, satisfy the KKT conditions (B.1). Let strict
complementarity hold at Vv, i.e, R(V) = S(V). Then V is a strict local maximizer if
and only ifd'Qd < 0 foralld € T(v)\{o}.

Proof. Follows immediately from Theorem @ O

Remark 3.6. As mentioned before, in general nonlinear programming, there is a
gap between second order necessary and sufficient optimality conditions. But for
the special case of (StQP) it is shown that there is no gap. As a matter of fact our
result can be seen as a special instance of a more general result which says that if
the feasible set of the quadratic program is convex then there is no gap between
second order necessary and sufficient conditions for optimality, for details see [32,
Theorem 4].

We have presented optimality conditions, now we will focus on another
interesting result which in turn leads to conditions on the matrix such that the
existence of a strict local maximizer is guaranteed. First we will provide some
auxiliary results required in the proof.

Definition 3.7 (Affine Subspace). An affine subspace W C R™ is the translation
of a subspace V' C R" by a vector u, i.e.,

W={weR":w=u+v, veV}

Moreover dim(W) := dim(V'), where dim(V') denotes the dimension of the
space V.
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Definition 3.8 (Affine Hull). For S C R™, the set of all affine combinations aff(.S)
of S is called affine hull of S, i.e.,

k k
aff(S) = {Zaivi:vi €S eRi=1.kY a=1k EN} .

i=1 =1
It is not difficult to show that aff(.5) is the smallest affine space containing S.

Definition 3.9 (Relative Interior). Let S be a convex set. A pointv € S is in the
relative interior of S, denoted by rint(.S), if for any v € S there exists v € S and
0 < A < 1suchthat

V=AV+(1-\)v.

The following lemma states that if a point v belonging to the relative interior
of a convex set is a local maximizer of the quadratic form, then it is a global
maximizer on the affine hull of the convex set,

Lemma 3.10. Let V be a local maximizer of q(v) := %VTQV on a convex set S C
R™ and v € rint(S), then with aff(S) =V + V we have:

i. Forallu € V it holds
viQu=0andu’Qu <0
and Vv is a global maximizer of q on aff(.S) .

ii. If moreover q(V) = 0, then V is a global maximizer of q(v) on Span{v} + V,
ie,
wiQw <0 V weSpan{v}+V.

Proof. i. Since Vv € rint(S), so for eachu € V| ||u|| = 1 there exists ¢ > 0 such
thatv+ Au € Sforall 0 < )\ < &. Moreover vV is a local maximizer of S, hence,

q
VA2 TQV £ ) <V Qv
MuTQu+2Xv'Qu <0
Take A > 0 then,
M’ Qu+2v'Qu <0.

So, for A — 0 we obtain v/ Qu = 0 which implies u”Qu < 0. Since u”’Qu < 0
holds for all u € V, hence, v is global maximizer on aff(.5).
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ii. We consider part i. and obtain forany o € R,u € V,
(aV + W) Q(av +u) = a*vI Qv+ 2av  Qu +u’'Qu < 0. O

Lemma is simple and straightforward, however this lemma has a number
of consequences. One consequence is that if v is a local maximizer of ¢(v) on an
open subset of R™, then V is a global maximizer on R™. Moreover, in this case
@ is negative semidefinite. Another consequence of this lemma is that if some
point is a local maximizer on a certain face of the simplex A,,, and it also belong
to the relative interior of the face, then the point is a global maximizer on the
affine hull of the face. Before formally stating this result we will define the face
of a convex set.

Definition 3.11 (Face). Let S be a convexsetand ' C S. Then F'is called a face
ifforany vy, vy € Sitholds that Av; + (1 — A\)vy € F forsome 0 < A\ < 1 implies
Vi1,Vo € F.

In other words the above definition says that a (convex) subset F' of a convex
set S is a face of S if any line segment in S with relative interior in ¥ has both
end points in F' [[L31, page 162]. From the above definition, it is clear that with
J C U, where as usual i/ := {1,--- ,m}, the faces of A, are given by,

fcy := {veRT:eTV:l,vj:(), Vi¢J}
Moreover, the faces of the standard simplex are itself standard simplices of
lower dimensions.

Corollary 3.12. Let v € int(fc;) be a local maximizer of (StQP) on a face fc;
then v is global maximizer on aff(fcy).

Proof. Follows directly from Lemma . O

Theorem 3.13. Let V € A,, be a non-strict local maximizer of v Qv and v &
rint(A,,), then Q is singular.

Proof. Since V is a local maximizer, we have from Lemma B.10,
viQu=0, u’Qu<0 VYusuchthate’u=0 (3.10)

Since V is a non-strict local maximizer from Theorem @ it follows that there
existsao # d € C(v) suchthatd” Qd = 0. Moreover, since V is a local maximizer
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it satisfies the KKT conditions and from Remark @ we get,
viQd = 0.
Now consider u such that e’'u = 0. Then by (3.10) for § > 0 (small)

(d+6u)’'Q(d=+déu) <0
= +20u’'Qd + s*u’'Qu <0

Dividing by 6 > 0 and taking the limit 6 — 0 implies u” Qd = 0. Hence we have
ad # o such that e’d = 0 with u”Qd = 0 for all u such that e’u = 0 and
VTQd = 0. So, in view of Ve = 1, (@d is orthogonal to the whole R™, which
implies, @Qd = o, giving that Q) is singular. O

The following is an immediate corollary,

Corollary 3.14. Let Vv € A,, be a non-strict local maximizer with R(V) = S(¥)
then Q) Is singular.

Proof. 1f v is a non-strict local maximizer then it is not difficult to see that under
the condition R(V) = S(V), Vg(y) is a non-strict local maximizer with respect to
QRr(w) and V() € fcg(). Then by Theorem , QR(w) Is singular. O

3.3 Stability Analysis

In the previous section we have presented a characterization for a point v to be
a strict local maximizer of (StQP). In this section we shall consider the
stability properties of the maximizer. More precisely we will study the effect of
small perturbations in the matrix involved in (StQP) on local maximizers. For
this purpose we will consider the following parametric optimization problem,

(StQPg) max qg(v) := %VTQV st. veEA,

where () € &, is seen as a parameter. First we define for the candidate
maximizer Vv the matrix Iy such that Iy = [e; : ¢ ¢ R(V)]. Then the KKT
conditions given in (El]) can be written in the matrix form as follows,

Q -—e
(3.11)

= > <«
Il
|
—_

v
T
II' o O
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where p € RU\EM) ¢ is a zero vector of appropriate dimension while O is the
[U\R(V)| x U\ R(V)| matrix of zeros. First we will give an auxiliary result.

Lemma 3.15. Let A € S,,, and B € R"™*" be such that d" Ad < 0 foralld €
ker{ BT}\{o}. Then the matrix Q := (;T g) is nonsingular if and only if the
columns of B are linearly independent.

Proof. = Let Q be nonsingular but let the columns of the matrix B be linearly
dependent, that is there exists a w # o such that Bw = o. Then for u = o and

v := (), we write,
Qv = Au+Bw) (o
- BTu “\o

which leads to a contradiction to the assumption that @) is nonsingular.

<« Let the columns of the matrix B be linearly independent and let the matrix Q)
be singular,i.e., there exists an 0 # v := (&) € R™"" such that Qv = 0. So we
have,

Au+ Bw=o0 (3.12a)
BTu=o0 (3.12b)

From (B.12H) we can conclude that u € ker{B”}. Ifu = othenw # o
(otherwise v = 0). So from () we get Bw = 0 which is a contradiction to
the basic hypothesis that the columns of B are linearly independent. Now if
o # u € ker{BT} then from (B.12d) we get u” Au = —u’Bw = —(BTu)w
which using () reduces to u” Au = 0 hence we arrive at a contradiction to
the hypothesis thatd” Ad < 0 for all o # d € ker{B”}. O

In the following theorem we will show that for a strict local maximizer
satisfying the KKT condition with strict complementarity, locally, the
maximizer changes smoothly with the matrix ). The following theorem is a
special case of the result given in [64, Theorem 6].

Theorem 3.16. LetV € A, satisfies the KKT conditions (El]) with respect to the
matrix (Q with Lagrange multipliers X and i and let V,Ji satisfy the strict
complementarity conditions, ie, S(V) = R(V). In addition assume that
d”Qd < 0 holds for all o # d € C(V) (ie, V is a strict local maximizer). Then
there exits a C* function f : N.(Q) — Ns(V,\, i), f(Q) = (v(Q), \(Q), u(Q))
such that v(Q) is a strict local maximizer of (StQPg) and f(Q),v(Q), u(Q)

satisfies strict complementarity.
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Proof. Define the system of equations,

Q —-e Iy A% o
FQ, v, u)=|-el 0 o' |[X]=]-1 (3.13)
II' o O m 0

where 1 € R‘JI;{\R(V”, then the Jacobian of F' with respect to v, A, i reads,

o . @ —e IV
VV7)\,MF(Q,V’ >\7ﬂ> = _gT 0 OT
I o O

First we will show that the matrix Vy ) ,F(Q,V, \, &) is nonsingular. We take
B := [—e Iy] and note that ker{B”} = T'(v) (see (B.8)). Recall that from strict
complementarity we have C'(v) = T'(V). Moreover the columns of the matrix B
are linearly independent, so from the conditions d”Qd < 0 for all
0 #d e C¥) = T(¥V) (since R(¥) = S(¥)) we can conclude that the matrix
Vv, F(Q,V, 1) is nonsingular. Hence by the inverse function theorem (see
e.g. [133, Theorem 9.24]) there exists ¢ > 0 and § > 0 and a C**° function f,

f : NE(@) - N(S(V,X,ﬂ)

such that f(Q) = (v, \, 1) and (v(Q), \(Q), u(Q)) € Ns(V,\, z) is the unique
solution of ().

In order to show that v(Q) is a strict local maximizer, we will show that v(Q)
satisfies the second order sufficient condition. For the sake of contradiction we
assume that there exists an infinite sequence Q) — Q and critical vectors d;, €
C(v(Qg)), ||ldx|| = 1, such that

df Qudy >0 (3.14)

We can assume that d;, — d (as we did in Theorem B.4)) with ||d|| = 1. First we
will show that d € C(V). For simplicity of notation take v, := v(Q) and note
that d; € C(v;) will imply that e’'d;, = 0, (Qxvi)Tdi > 0and (dy); > 0 for all
i ¢ R(v;). Taking k — oo and noting that from (B.13) we get, R(v;) = R(V) we
arrive atd € C(v). Now taking k — oo in (B.14)) gives d”Qd > 0 which is a clear
contradiction to the assumption d”Qd < 0 forallo # d € C(v).

We choose € > 0, such that (@) > 0 forall @ € N.(Q) in order to preserve
strict complementarity. O

In the following example we will show that the strict complementarity condition
is indeed essential to assure the stability of a strict local maximizer in (StQPy).
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Example 3.17 ([[L7]). Consider the matrix,
0 01
Q:=(0 0 1
1 11

Itis not difficult to verify thatV := eg is a strict local maximizer® and R(e3) := {3},
S(es) :={1,2,3}. Now consider the perturbed matrix,

0 —& 1—c¢
Q.= —¢ 0 1—¢
l—¢ 1—¢ 1-—2¢

In this case for every v := (v1, va, Ug)T € Az we have,

viQ.v=(1—-¢)vyvs + (1 — &)vgus + (1 — &)vz — £(v3 + 2v119)
=1— (v1 +v2)? —2e(1 —v1)(1 — vg)

It is not difficult to verify that v, := (1 — a)(s,0,1 — &) 4+ a(0,e,1 — )7 for
0 < a < 1, is a local maximizer.

Our next result will establish the Lipschitz stability. First we define the
Lipschitz continuity,

Definition 3.18 (Lipschitz Continuity). A function f : R” — R/ is said to be
Lipschitz continuous at a point vg € R” if there exists a constant L,e > 0
such that

1f(v) = f(vo)ll < Ll[v = vo Vv e Ne(vo).

The following Lemma is useful for the proof of the next two theorems,

Lemma 3.19. LetQ € S,, and letV € A,, be a strict local maximizer with respect
to Q then there existe > 0,6 > 0and v(Q) € N; (V) N Ay, such that for all
Q € N. (Q), the point v (Q) is a local maximizer with respect to Q.

Proof. Since V is a strict local maximizer and by continuity there exists ¢ > 0,
a > 0,6 > 0 such that

m®2%®—%erM@) (3.15)
ag(V) < qg(V) — 2 Vv € Ap, suchthat [|[v —v|[ =§ (3.16)

'sinceed Qes =1 >vIQv=1— (v1 +wve)?foralles # v := (vi,v2,1 —v1 —v2) € A3
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aQ(V) < qg(V) —a Vv e Ay, suchthat|[v—V|| =4, and Q € N-(Q).

(3.17)
Combining (E.la) and (B.l 5) we have,
_ .« a YveA,, suchthat||v—V|| =4,
> 0~ (V) — — > = -
0V 26"V =520V 4 Qe N@Q)

So, there exists a global maximizer v = v(Q) on A,, N N(V) with |[v - V| <
which is a local maximizer. O

In the following theorem and throughout the thesis for a matrix Q € R™*™, ||Q||
denotes the Frobenius norm of the matrix Q, i.e,, ||Q| := /tr(QQT).

Theorem 3.20. Let Q € S,, and let Vv € A,, be a strict local maximizer with
respect to Q. Then there existe > 0,6 > 0 and L > 0 such that for all Q € N, (Q)
and for all local maximizers v (Q)) of (StQPg) with v(Q) € N;s (V) the following
holds,

v(Q)-v|<L||Q-Q|.

Proof. Since V is a strict local maximizer by Theorem @ it must satisfy the
second order condition. So there existy,d > 0 such that,

YIvV=9? < g (¥) —gg(v) YVveENs¥)NA, (3.18)

From Lemma itis clear that there exist a local maximizer v (@) with respect

to the matrix Q € N.(Q). For the ease of notation we take v := v (). Now since

v is a local maximizer with respect to ) € N.(Q), we have,

9Q (V) —qq (V) <0
Define h (v) := qq (V) — ¢ (V). Using the mean value theorem with respect to v,
with 0 < 7 < 1, we find
h(v)—h(V)=Vyh(V4+7(V-V))(V-V)
<[Vvh (V7 (v =V)[I(v-V)l
= +7(v-9)"(@Q-Q)lllv-V]|
<[v+rv-v)le-Qlllv-v|

< max wl Q- @ v~
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Finally consider,

15 (V) — 4z (v) = a0 (V) — ag (V)] ~ |60 ¥) — 4 ()] + [a (7) — 4 ()]
= h(v) = h(V) + [gq (V) — qq (V)]

<0
< h(v) — h(V)
< jmuax W] |Q = Q]| [lv—¥]

|w|| then the above relation together with (B.18) implies,

Take ¢ := max
WEN;(V)

ylv=9I* < cf|Q - Q| Ilv -l

Hence the result follows with L := 5 O

In Example the maximizer does not satisfy strict complementarity and we
have shown that there exists a matrix in the neighbourhood which does not
have a strict local maximizer. But there exists situations where a strict local
maximizer behaves stable even if the strict complementarity does not hold.
Consider the following example,

Example 3.21. Consider the matrix,
01 1
Q=11 01
1 11

1t is not difficult to verify that es is a strict local maximizer? and R(e3) := {3},
S(es) := {1,2,3}. In order to show that each matrix in the neighbourhood has a
unique strict local maximizer near es it is sufficient (as we will see in Theorem
to show that d7Qd < 0 forallo # d € T*(e3) (see (B.9)). First we calculate
T+ (63),
TH(es):={deR>:e’d=0,d; = 0Vi¢ S(es)}
={d€R’:dy +dy+d3 =0}

Now foro # d € T (e3) we get,

d7Qd = dy(dy + d3) + do(dy + d3) = —((dy + d3)* + d3) = —(d? + d?) < 0.

“since el Qes =1 >1— (vi +v3) =v Qvforalles # v := (vi,ve,1 —v1 —v2) € A3
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A KKT pointv € A, with respect to (StQPQ) is said to satisfy the strong second
order condition if d”Qd < 0 foralld € T*(V) (see (@)). Theorem states
that if the strict local maximizer Vv satisfies the strong second order sufficient
condition then locally the strict local maximizers, with respect to the matrix @,
behave Lipschitz continuous. Note that the result presented in Theorem is
a special case of the result in [98, Theorem 2]. For the sake of completeness we
also provide a proof.

Theorem 3.22. LetQ € S,, and letV € A,, satisfy the KKT conditions (B.1) with
respect to o # (), with Lagrange multipliers \ and 7i. In addition let dTQd <
0 hold for all d € T+ (V). Then there exist ,6 > 0 and a Lipschitz continuous
function f = N.(@) — N3(¥, A7), £(Q) = (V(Q), 1(Q), Q) such that v(Q)
is a strict local maximizer with respect to ). Moreover v(Q) is the unique local
maximizer with respect to () in a neighbourhood of V.

Proof. From Lemma it is clear that there exist a local maximizer v (Q)) with
respect to the matrix Q € N.(Q). The maximizer v(()) must lie on one of the
faces ( say fcg) of A, with R(V) € R C S(X). So with R® := U\R, S°(V) :=

U\S(V), RE(V) := U\R(V), itis clear that
S¢(V) C R° C R4(V) (3.19)

The maximizer property of v(Q) and continuity will imply that the

corresponding multipliers \(Q) € R, u(Q) € R‘f”c'
of the (finitely many) systems of KKT equations,

must be the solution of one

Q -—e Ip v 0
el 0 o0 A =1 -1 (3.20)
Ir 0 0 I o

where I := [e; : i ¢ R]. By the strong second order condition, i.e., d’'Qd < 0
forallo # d € T;L(V), for any R in (3.19) the system matrices of (B.2(]) are

nonsingularin N, (Q) fore > 0 small enough. So the KKT points v(Q), \(Q), 1(Q)
must coincide with values of one of the (finitely many) rational C'*° functions,

-1

v(Q) QR —e Ip 0
MQ)|=1-e" 0 o0 -1 (3.21)
n(Q) I 0 0 o

We now show that fore > 0 small enoughany @) € N.(Q) can have at most one
local maximizer in Nj, (V), for some d; > 0. Assume that there exists a sequence
Qv — Q,v — oo and two local maximizer v} # v2 of vQ, v over A, such that
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vl v2 € N, (V). Each sequence v, p = 1,2 must have a limit point v* € N(V).
By a continuity argument g5(v*) = ¢5(Vv ) and thus v/ = v, p = 1,2. Without
loss of generality consider a sequence of solutions such that v) — ¥ and that
for all p, v, are solution of (3.20) for (the same) index set Ry # R, satisfying
Se(v ) € Ry C RE(V) forp =1,2:

Quvl — Noe+1Ip pt=0,e"vi=1,[v0]; =0 j€ER, p=12.  (3.22)

Since either qq, (V1) < qq, (V) or qg, (Vi) > qo, (v2) holds again by selecting a
subsequence, without loss of generality, we assume,

0<4qq,(V)) —qq,(vy,) V VvEN (3.23)

By puttingd, m we canassume d, — d, ||d|| = 1. Observe thate’d, =
0 holds and since (v.); = 0 forall j € R; (see (8.22)), then

(v2); = (v)); >0 VjeR (3.24)

and thus (d,); > O for all j € R;. By taking the limit » — oo we find efd =0
withd; = Oforall j ¢ S(V)andd; > Oforall j € R;. In particulard € T (v).
In view of () and using the KKT conditions for v} we obtain,

0 < qq, (V) —4q.,(V,)

= (V) Quvl + 572

1
VI 4 6 VT QU V)

vV, —V )TQV(V —v))

-

1
< LT QUE - V)

Since (v2—v})TIg, u} > 0by (B.24). By dividing these relations by |[vZ—v' || and

letting v — oc it follows d”'Qd > 0 with 0 # d € T (V) which is a contradiction
to the strong second order condition. O

Note that for the matrix () in Example the strong second order sufficient
condition does not hold.

3.4 Evolutionarily Stable Strategy

The concept of an evolutionarily stable strategy (ESS) was defined by Maynard-
Smith and Price [142]. The concept was introduced as the application of a game
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theoretic model to the conflict among animals. In order to give a mathematical
formulation, the conflict among animals is described by an m x m matrix QQ =
(gij) where g;; is the expected gain a user of pure strategy i gets whose opponent
uses pure strategy j. If a user plays each pure strategy with a certain probability
then its strategy is called mixed strategy. So the set of all available strategies
can be denoted by the unit simplex A,,. The mean payoff to a user of strategy
v € A,, whose opponent plays the strategy u € A, is then v/’ Qu. Now consider
(see [91]) an infinite monomorphic population which has achieved a stable state
and assume that some new population of size ¢ invade the current population.
These mutant/migrant are users of a mixed strategy u. Then the ESS conditions
for v say that the average gain of the user of strategy v is strictly greater than the
average gain of the mutant/migrant which are using strategy u i.e.,

(1—e)v'Qv+eviQu> (1 —e)u’Qv+ecu’Qu Ve > 0small (3.25)

Now in the limiting case ¢ — 0 we will have for all u # v, viQv > u’Qv and
in the case of equality we will have, v/'Qu > u”Qu [91]. Hence an ESS can be
defined in the following way,

Definition 3.23 (Evolutionarily Stable Strategy (ESS)). Let @ € R™*™, then
v € A,, is an ESS with respect to the matrix @ if following two conditions hold,

i viQv>ulQv VvV ueA,
ii. ifu e A,,,v#u,v'Qv=u’Qvthenv'Qu > u’Qu

For areview of the ESS theory the interested reader is referred to [91]. In [112,
141] the mathematical foundation and its relation to the theory of evolution is
discussed. The computational complexity of ESS is discussed in [62,118]. Some
exact and approximate algorithms for finding ESS is the topic of [21].

In the case of symmetric matrices the concept of ESS is directly related to the
maximization problem (StQP).

Proposition 3.24. Letv € A, and QQ € S,,, then V is a strict local maximizer of
(StQP) if and only if V is an ESS with respect to Q.

Proof. = LetVbe a strictlocal maximizer. We will show that vis an ESS. In order
to prove this first note that A,, is convex and foranyu € A,,,u #vand A > 0
small the following holds forw = v + A(u — V),

0 <viQv—wlQw =2 Qv —v'Qu) — \2(u - v)TQ(u —v)
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= A2 - N)(V'QV—-v'Qu) + \2(u’' Qv —u’Qu) (3.26)
Then by dividing this expression by A > 0 and taking A — 0 we get
viQv —vI'Qu > 0.
If v/ Qv — ¥/ Qu = 0 then from (B.26) we get u” Qu — u” Qv < 0. Hence V is an

ESS.
< Let v be an ESS we will prove that v is a local maximizer. In order to show this

take anyw # Vnearv,w € A,,. Wecanfindau € A,,,u # vand (small) A > 0
such thatw : =V + A(u — V) € A,,. Now consider,

VIV —wiQw =\(2 - \) (VIQV —vIQu) +\* (u'Qv—u’Qu) >0

/

20 >0ifvI Qv — v Qu =0

The above inequality holds due to the conditions of ESS. O

In the proposition above we have seen that an ESS for symmetric matrices is
equivalent to a strict local maximizer of (StQP). In the case of nonsymmetric
matrices neither direction holds meaning that if v is an ESS, we cannot say if it
is a strict local maximizer and also if V is a strict local maximizer we cannot say
that it is an ESS. Consider the following example,

11
o= (5 })
3 3
First we claim that v := (1 4)T € Ay is an ESS. In order to see this take u :=

55
(u,1— ul)T € As. Then it is not difficult to verify the following,

Example 3.25. Let

3 1 5
vigv=u'Qv=1, VTQu=g+2u1, uTQu:3u1+§—§u$.

From this we get, V' Qu — uTQu = 3 (u; — %)2 > 0 for all u; # vi. Hence
V is an ESS. But V is not a strict local maximizer since for ¢ > 0 very small take
W:=V+e(eg—V)= %(1 + 4e,4 — 4¢)” then we have

vViQv—wiQw=1- <1+§5(1—5)> :—25(1—5)<0 .

Now consider v := (%, %)T Then it can be readily verified that Vv is not an ESS. We
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will show that Vv is a strict local maximizer. For 0 < X\ < 1 and u € Ay we have,

w:=v+A(u—-v)= <§+)\<u1—§>,§+)\<g—u1>> .

Then we have,

ST T 2 2
vV — _- - — - — 7)\ - - — 7)\ - - .

Clearly the above expression is positive for all uy # % Hence V is a strict local
maximizer.

An interesting property of ESS, as observed by Bishop and Cannings [[14], is
that if we add a constant to the columns of a matrix then the original and the
resulting matrix have the same set of ESS.

Lemma 3.26. Let A € R™*"™ and a; are the columns of A. Define the matrix B
with columns b; = a; + a;e, where a; € R. Then Vis an ESS of A ifand only if V is
an ESS of B.

Proof. Letu,v € A,, and a = (a1, o, ...,am)T € R™. First note thatu’ B =
u?’A + oT. Then

w'Bv=ulAv+d'v, VBv=v'AVv+alV
and
VIBYV —u'Bv =V AV + o’V —ul AV — o'v = v Av — u” AV

Note that v/ Bv = u” Bv if and only if v/ AV = u’ Av. The second condition of
ESS can be shown to hold in a similar way. O

For the case of symmetric matrices the above result is not useful in the sense
that adding a different constant to each column may result in a matrix which is
no more symmetric. So the following corollary is more useful in the case of
symmetric matrices.

Corollary 3.27. Leta € R, thenv € A, isan ESSof A € S,,, if and only ifV is an
ESSof A + aee’.

Proof. Follows immediately from Lemma . O
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3.4.1 Existence of ESS

In this subsection we will discuss necessary conditions for the existence of an
ESS. We shall show that there exist matrices with no ESS, moreover every
nonsingular 2 x 2 matrix has at least one ESS. We start the existence analysis of
ESS with the following necessary conditions initially formulated by Haigh [79].
First we define the set,

500 1= {1+ (@v) = max(@w), }.

Lemma 3.28. (/79 Theorem 3]). Let Q € R™*" and letv € A,, be an ESS with
respect to (), then

(QV); = max(QVv); Vie R(V) “orequivalently” R(V) C S(v), (3.27)
J

where R(V) denotes the support of the vector v (cf. (B.2)).

Proof. We suppose to the contrary, that there exists j € R(V) such that, s :=
max;(QV); > (QV);. Then foru € A, with R(u) C S(¥) it follows u” Qv =
Z UZ(QV)l = sand

VOV =V,(QV); + ) _Vi(QV); <D Vis=s=u'QV
1#£j )

leading to a contradiction that v is an ESS. O

It can be readily verified that for Q € S, the necessary conditions given in the
above lemma are equivalent to the KKT conditions [@). This can be shown by
taking A = max; (Qv); where X is Lagrange multiplier in (@). From this
observation and for the same value of A we can also conclude that the set §(V)
(see (B.3)) is equal to S(¥), i.e, S(V) = S(¥).

Remark 3.29. Itisinteresting to note that if v is an ESS with respect to the matrix
Q, then equality in the first condition of ESS precisely occurs for those u € A,, for
which R(u) C S(¥). This follows from Lemma 3.28. To see this let s = max; (QV);.
Then (B.27) implies V' QV = s. Moreover (QV); < s foralli ¢ S(V), and if R(u) ¢
S(V) then

u'Qv=-s Z u; + Z ui (QV);

i€S(V) i¢S(V)
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<s Z u; + S Z ui:s:VTQT/

i€S(V) i¢S(V)

so in the case R(u) ¢ S(V), we always get strict inequality in the first condition of
ESS.

In the following lemma we give sufficient conditions for the existence of an
ESS for a matrix Q.

Lemma 3.30 ([79]). Let Q € R™ ™. If for i it holds that q;; > qj; for all j # i
then e; is an ESS of Q.

Proof. First note that Qe; will give the i column of the matrix Q and foru € A,,
consider,

UTQez‘ =quul + ...+ Qi + ...+ Gmium
< qii(ul +us+ ...+ um) = qi; = el-TQei .

Hence ¢; is an ESS. ]

As mentioned before, for every nonsingular 2 x 2 matrix there exists an ESS.

Lemma 3.31 ([[79]). Every nonsingular 2 x 2 matrix has at least one ESS.

_ (q11 q12
@ <CI21 Q22> '
Now if g11 > @¢o1 Or gos > gi2, then there is an ESS due to Lemma . Now

suppose that g11 < ¢o1 and g2 < ¢19, in this case it can be readily verified that
Vv := (v1,1 — vp) is an ESS with,

Proof. Let

q22 — 412
v = .
q12 + q21 — q11 — Q22

The denominator in the above expression can only be zero when ¢11 = go1, g22 =
q12, which corresponds to a singular matrix. O

It is claimed by Vickers and Cannings [151, page 389] that every nonsingular
symmetric matrix has an ESS. A proof of the claim is not given. As a matter of fact
the example given below, with a nonsingular matrix without an ESS, provides a
counter example to the claim.
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Example 3.32. Consider the nonsingular matrix

2 2 1
A=12 2 1
1 1 -2

In order to show that the matrix A does not have an ESS first note that v := (vy,1—
v1,0) € A, cannot be an ESS since VIAV = 2 forall 0 < v; < 1. Moreover
V= (v1,v2,1 — v —v2) € Ay, with 0 < v; + vy < 1 cannot be an ESS. In order

to see this consider
_ 1+vi+ov2
AV = 1+vi1+4v2
3v1+3v2—2

and note that if V is an ESS then from Lemma we should have, 1 + vi 4+ vy =
3v1 + 3ve — 2 implying v1 + vy = %, which is a clear contradiction.

However the following is true,

Corollary 3.33. Let Q € S,,, be such that each principle submatrix is nonsingular.
Then () has an ESS.

Proof. Itis clear from Proposition that an ESS corresponds to a strict local
maximizer. Assume that the global maximizer is not a strict local maximizer.
Choose such a global maximizer Vv on rint(fcg(y)) with maximal support R(V).
Then Vv is not a strict local maximizer on fcg) and by Theorem we have
det(Qp(w)) = 0, which is a contradiction. O

3.4.2 Patterns of ESS

In this subsection we shall give a brief survey of results related to the patterns
of ESS. A pattern, roughly speaking, is a set of supports of ESS. In this
subsection results on the patterns are provided for which it is known that they
cannot exist. A complete enumeration of patterns for a matrix of order up to
four is also presented.

Definition 3.34 (Pattern of ESS). A pattern P is a set of distinct subsets of the set
U :={1,...,m}. We call a pattern attainable if there exists a matrix Q € R™*™
with ESS whose support corresponds to each of the subsets of I/ present in the
pattern. An attainable pattern P is called maximal if there is no P* O P which
is attainable.

More specifically a patternisaset P = { Py, P», ..., P} such that P, C U and
P; # Pjforalli # j = 1,...,k. We call P an attainable pattern if there exists a
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matrix () with k£ ESS namely vy, v, ..., vi, whose set of supports is R(vy), R(v2),
..., R(vy) such that for each ¢, R(v;) = P,. In this subsection we shall use P to
denote the pattern. For example P = {(1,2,3),(3,4),(1,3,5,6)} means that
the pattern consist of three subsets of &/ with set of supports {1, 2,3}, {3,4}
and {1,3,5,6}.

The following is a well known conjecture concerning the attainable patterns.

Conjecture 3.35 ([[151]). Let P be an attainable pattern and P* C P then P* is
also attainable.

A weaker result is proven by Broom [34]. The conjecture is useful when it is
required to find a complete list of attainable patterns. Itis worth mentioning that
there exists some patterns which are not attainable by symmetric matrices. The
pattern P := {(1,2),(1,3),(2,3,4),(3,5),(4,5)} is attained by a nonsymmetric
matrix but it is not attainable by any 5 x 5 symmetric matrix [43, page. 197].
For the matrices of order 2,3,4, a complete list of attainable patterns is known
and is discussed by Vickers and Cannings in a series of papers [42, 43,[151]. The
description is based on some exclusion results stated and proven by Vickers and
Canning. Here we will enlist these exclusion results starting with a simple result
of Bishop and Cannings [15],

Lemma 3.36 ([[15]). Let Q@ € R™*™ and let v,u € A,, be two ESS with respect
to @), then
R(v) Z S(w) and R(u) Z S(v)

Proof. Let us suppose to the contrary that R(v) C S(u). Sinceu € A,, is an ESS
we have u” Qu > v?'Qu, and due to the arguments given in Remark only the
equality is possible (i.e. u”Qu = v’'Qu), in which case we get u’ Qv > v Qv,
which contradicts v being an ESS. O

The immediate consequence of the above lemma is that it excludes the possibility
for the existence of two ESS such that the support of one is contained in the other.
Another consequence of the above result is that, if there exists an ESSv € A,
such that |R(V)| = m, then it is unique.

Now we turn our attention to the exclusion results related to certain patterns.
We start this discussion with matrices of size 3. Lemma says thatfora3 x 3
matrix there cannot exists three ESS of support size two, simultaneously.

Lemma 3.37. Let Q € R3*3, then P := {(1,2),(2,3), (1,3)} is not attainable.
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Proof. See [[151]. O

In the following theorem we will enlist all patterns which are known to be not
possible.

Theorem 3.38. Let Q € R™*"™, then the following patterns are not attainable,
i with S CU\{1,2,3}, P:={(1,2,9),(2,3,5),(1,3,9)}

ii. with S CU\{1,2,....k},
P:={(1,kS),(2,k,9),...(k—1,kS),(1,2,....k —1,5)}

iii. with S CU\{1,2, ...k}, P :={(1,9),(2,9), ..., (k, ), (1,2, ....k)}

iv. withk <m, P:={(1,k+1,k+2,--- ,m),(2,3,--- ,k,k+1,k+2,--- ,m),
(172)7<173)7 7(17k)}

Proof. Part i,ii. and iii. are proven in [151] while part iv. is proven in [41,
Theorem 6]. O

By applying the above exclusion results, Vicker and Cannings [[151] have
provided a complete list of maximal patterns for matrices of order up to 4. For
matrices of order 5 a partial list is provided. In the following theorem the
maximal attainable patterns for matrices of order up to four are enlisted. For
examples showing the attainability, the interested reader is referred to [[L51].

Theorem 3.39. For m = 2,3,4 the following is the complete list of maximal
patterns which are attainable,

m=2: {(1,2)},{(1),(2)}

m=3: {(1,2,3)},{(1,2), ( 3)1:1(1,2), 3)}, 1(1), (2), (3)}

m=4: {(1,2,3,4)}{(1,2,3),(1,2,4)},{(1,2,3),(2,4), (3,4)}, {(1,2,3), (4)},
{(1,2),(1,3), (1,4)},{(1,2),(2,3), (3,4), (1,4}, {(1,2), (1,3), (4)},
{(1,2),3), @)}, {(1), (2),3), (1)}

The description of the maximal attainable patterns given in the above
theorem is minimal in a sense that when we write {(1,2), (1, 3)} is attainable
then any permutation is also attainable, ie., {(1,2),(2,3)}{(2,3),(1,3)} are
also attainable.
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3.4.3 ESSin {0,+1} Matrices

In this subsection the existence of ESS in a special class of matrices is discussed.
The matrix class is denoted by M,

M:={Q €Sy, : ¢i;j = £1,¢;; = 0}.

To each ) € M one can associate a graph G = (V, &) with the set of vertices
V ={1,2,...,m} and the set of edges € such that {7, j} € £ ifand only if ¢;; = 1.
For these matrices and the corresponding graph, an ESS can be characterized by
the maximal clique property.

Definition 3.40 (Maximal Clique). Let ) be the set of vertices in the graph G.
A subset V C V is called a clique if every pair of vertices in V is connected by
an edge. A clique is called maximal if it is not properly contained in some other
clique.

The following results have appeared in [42]. For the sake of completeness,
here, we include the proof of the theorem,

Theorem 3.41 ([42]). Let Q € M. Then there is an ESS (say V) with support
S := R(V) ifand only if S forms a maximal clique in the corresponding graph G.

Proof. Let us suppose that S C U is a maximal clique in G. We define v € A,,

such that,
ﬁ ifieS
V; = .
0 otherwise

Now it is sufficient to prove that v is a strict local maximizer. Letu € A,, with
u # V. Considering the convex combination, W := V+ A\(u — V) € A,,, then v
is a strict local maximizer if and only if, for all suchu € A, and A > 0 small the
following holds,

wiQW - vIQV=22v"Qu - v) + Xu-v)"Qu-v) <0 (3.28)

First note that for the case R(u) ¢ S we have v\ Qv > u”Qv. In order to see
this observe that the principle submatrix () s corresponding to .S does not contain
negative entries so we have (Qv); = ﬁ(b’\ — 1) foralli € S. Moreover since S

forms a maximal clique, for all i ¢ S it follows that (QV); < |—é|(|S| — 1), which
results in

Qv ="> " (QV)iui + Y (QV)iu;

€S €S
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ysy ISI= 1D ui+ > (QV)ius

€S €S

S| —1)=vIQv.

<5

Now consider the case R(u) C S. Then Qs = E — I where E is the |S| x |5]|
matrix consisting of all ones while I is the identity matrix of order |S|. Observe
also that for v the following holds,

1
7T —
V'Qu—-V) = —elQs(us — es) = e5(E —I)(us — —es)
|S| ° ] 1515 H
1 1
= —e (Eus — —Feg — Iug + —Ies)
B E H
T(eselu ‘S‘ —ug + —: ! es)
segug — s
5] T g ®S ]
1
= —el(eg—eg—ug+ —eg)sincee’u=1
Ehs 5]
1 T L 7
- (_ — =0 3.29
|S‘( eSuS+’S’eSeS> ( )
where eg € R‘f‘ is the vector of all ones.
Since R(u) C Sforo # w=u—Vvitholdsw; = 0foralli ¢ S. So
WTQW = Z Qi Wiw; + Z Qi WiW;
1,jES ,]§ZS
i#]
= Z Gijwiw; = Z wiw;
7]65 ,]ES
#j #j
2
= (Zw) =Y wi | ==Y wi<o (3.30)
ieS ies ies

The last equality follows since e’w = 0. So the inequality in () follows
from (B8.29) and (B.30).

For the converse let V be an ESS with support R(V). If R(V) does not form a
maximal clique in the corresponding graph then there may occur two
possibilities

i. R(v) forms a clique but not a maximal clique. In this case there exists some
S C U such that R(V) C S where S forms a maximal clique in the graph G.
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ii. R(V)doesnotform aclique atall, meaning that there exists some i, j € R(V)
such that ¢;; = —1. In this case there exists some S C R(V), such that S
forms a maximal clique in the corresponding graph.

Now from the first part of the theorem, S corresponds to the support of some
ESS u. Since V is an ESS and the support R(V) is either contained in S or it is
containing S, we obtain a contradiction to Lemma . O

Interestingly all patterns given in Theorem are attainable by matrices from
the class M with the exception of the pattern {(1, 2, 3), (2,4), (3,4)} (for details
see [43, page 196]).

Remark 3.42. The result of Theorem can be generalized to matrices with
elements from {«, 3,~} such that « < < =, with 3 on the main diagonal. For
these matrices the graph G := (V, £) can be associated withY = U and {i, j} € £

ifand only if g;; = .

3.4.4 Number of ESS

In this subsection the question of the maximum number of ESS which can
coexists in a matrix () € R™*™ is discussed. The subsection starts with a well
known lemma from combinatorics which is helpful to obtain a bound on the
maximum number of ESS. The bound for the special case of the matrix class M
is also provided with an example proving that the bound is sharp. We will also
state results for ESS with specific support size.

Lemma 3.43 (Sperner's Lemma). Let S be a Sperner set of subsets of U := {1,
...,m} (ie for A/B € S,if A# B,then A ¢ Band B ¢ A). Then |S| < (LLTZ%J)’

2
where for a € R, |a] gives the largest integer less then or equal to a.

Proof. See e.g. [36]. O

In view of Sperner's Lemma and Lemma a bound on the maximum number
of ESS becomes apparent. For sake of completeness, the bound is provided in
the following proposition,

Proposition 3.44. Let Q € R™*™. Then () can have at most <L7£J) ESS.
2

Proof. Letwy,--- ,wy be ESS. Then from Lemma we get R(w;) ¢ R(w;)

foralli # j,i,7 = 1,---,N. By Sperner's Lemma the maximum number of

R(w;)'s in U such that no one is contained in some other is given by (LEJ) O
2
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Remark 3.45. From Theorem it can be concluded that the bound given above
is not sharp for the matrices of order 4.

Proposition provides a bound on the maximum number of ESS that may
coexists for Q € R™*™, For the class of matrices M the upper bound is different
and achievable as is shown in the following lemma and example.

Lemma 3.46 ([42]). LetQ € M. Ifm > 4and m = r + 3s, wherer = 2,3,4,
then the greatest number of ESS that can coexist in (Q is r3°.

Proof. Due to Lemma the support of each ESS corresponds to a maximal
clique in the associated graph G. The maximum number of maximal cliques in a
graph associated with () is bounded by 3° by the result of Moon and Moser [113].

O

The following example shows that the bound given in Lemma is tight.

Example 3.47. Consider the matrix () € S;,, m = 3n,n > 2

I1-F E E

E I-FE - E

E E - I —F
where E is the 3 x 3 matrix of all ones and I is the 3 x 3 identity matrix. Define n
sets S1,S2,- -+, Sy suchthat S; :={1+3(: —1),24+3(i—1),3+3(i — 1)} with
i=1,---,nand P :={S; x Sy x --- x S, }. Now forany S € P we have
0 i=j

1 otherwise

(Qs)ij == {

ie, S forms a (maximal) clique in the corresponding graph, so each S € P is
associated with an ESS, and there will be in total |P| = 3™ of them. Now define (as

we did in Theorem B.41)),
ﬁ ieS
v; =
‘ 0 otherwise

then vI Qv = |S‘|T_‘1 =1- % will be the value of each ESS.
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Number of ESS with Fixed Support

In the literature, instead of giving sharp bounds on the maximum number of ESS
much emphasis is given on the number of ESS with specific support size. Note
that sharper bounds for each support size then lead to sharper bounds for the
maximum number of ESS. In the context of (StQ) P) this gives the number of strict
local maximizers on a face of A,,, of a certain dimension.

Let us denote by u,,(r) the maximum number of ESS for @ € R"™*™ with
support of length r with equality used when it is known that the bound described
is tight. In the following theorem all known results for u,,(r) are summarized,

Theorem 3.48. Let () € R™*™ then,

i um(2) = | 3m?]

i, (3) < | 2 pom=13 |
iil. Uy (m—1) =2
V. Up(m—2)=m
V. Upm(m —3) < |m(m —1)]
Proof. See [34]. O

3.4.5 ESS in Random Matrices

It is shown in the previous subsections that a matrix can have many ESS, as well
as, that there exist matrices with no ESS. This situation leads one to think in
probabilistic terms, meaning one might think about the probability for a given
matrix to have an ESS? The question has been analysed for randomly generated
symmetric and nonsymmetric matrices. Here we will briefly summarise these
results.

The question of existence of ESS in randomly generated matrices is dealt
indirectly. Instead of analysing the existence of ESS the attention is given to the
question of existence of ESS with certain support size. The first result in this
direction is obtained for the ESS of support size one. It has been shown that the
probability for the existence of an ESS of support size one goes to 1 — % as the
size of the matrix goes to infinity [B80, [102]. Here it is worth mentioning that the
result is independent of the distribution used for generating the elements of the
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matrix. The only other case analysed is for the support of size two. In this case
the distribution for the generation of elements of the matrix play an important
role since the results are dependent on the distribution. Hart et al. [85] have
shown that if the elements of the matrix Q € R™*™ are generated using a
distribution F then,

« for distributions F with “exponential and faster decreasing tails" (e.g. uniform,
normal, exponential), we have
lim Pr(3 ESS with support size = 2) = 1
m—0o0

o for distributions F with “slower than exponential decreasing tails" (e.g.
lognormal, Pareto, Cauchy) we have

1
lim Pr(3 ESS with support size =2) =1 - —

m—00 \/E

Kingman [102] analysed the question of support size in large randomly
generated symmetric matrices. He has shown that for symmetric matrices
whose elements are drawn randomly using the uniform distribution, the
probability of existence of an ESS with support size greater than or equal to
2.49m2 goes to zero as m goes to infinity [81, 102]. Here the bound is in
dependence of the probability distribution used. Haigh [80] extended the work
of Kingman by proving a similar result for nonsymmetric matrices. For the case
of nonsymmetric matrices the probability of the existence of an ESS with
support size greater than 1.63m5 goes to zero as m goes to infinity.

Less attention has been given to the question of finding bounds on the number
of ESS in randomly generated matrices. The only result known is for the number
of ESS with support size two. It is shown that the number of ESS with suport size
two goes to %log(%) as m goes to infinity[81].

3.5 Vector Iterations

In this section we consider vector iterations for solving (StQP). We will also
discuss a similar well-known algorithm to solve a similar program. We start
with a special program which is used for finding the maximum eigenvalue of a
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matrix Q € Sp,.
(E-Mazx) max VvIQv s.t. vl =1, veR™,

where, as usual, ||.|| denotes the Euclidean norm. Here without loss of generality
we assume that @ is positive definite i.e. Q € S;iT, since Q and Q + al,« € R,
(E-Mazx) will have the same maximizers. A solution of the above program gives
the eigen vector corresponding to the maximum eigenvalue of the matrix @ (for
details see e.g. [67, Section 4.8]). Although (E-Max) is a special instance of a
quadratic program it is well known to be polynomial time solvable since it can
be reformulated as a semidefinite programming problem. In fact (E-Max) can
be used as a feasibility test for semidefinite programming problems.

The power method is a well known method for solving (E-Max) (see e.g. [75]).
The power method starts with an initial vector v(0) with ||v(0)|| = 1, and iterates:

Qv(t)
1) i= ——— 3.31
M 0] (3:30)
M= v+ DTQv(t+1) t=0,1,... . (3.32)

Here ¢ is the variable for the iteration. The power iteration is guaranteed to
converge under the conditions that the matrix () has a unique dominating
(positive) eigenvalue and the initial vector does not have a nonzero component
in the direction of the eigenvector associated with the dominating eigenvalue.
Here by dominating eigenvalue we mean the eigenvalue with the largest
absolute value.

In the following theorem we will show that the iteration (3.32) is
monotonically increasing for positive definite matrices. The proof is based on
an unpublished manuscript [135].

Theorem 3.49. Let Q € S;tF, then Xt < X!,

Proof. First observe that v(¢) can be written as follows,

Q)
Y= o)

Then A can be written as,

¢ V07 v(0)
RO

(3.33)
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For the sake of clarity in the proof we will use v instead of v(0). By defining
sp = vIQ"v, () can be written as A = 221 Note also that s > 0 holds

s2¢ °
since Q € S;F*. So in order to prove the theorem we will show the following:

S52t+1 < S2t+3 (334)

S2t S2t+42
From Ly := ||s2:11Q'V — 52:Q'T'v||? we get,
12
0< Ly = ||s2t+1Q"V — s2:Q" ||
1 N\T 1
= (82141Q"V — 52:Q"V) " (52111Q'V — 52, Q" 'v)
2 T2 T ~2t+1 2 T 2042
= 53,11V Q*V — 25911150V Qv + 53, v Q¥ PV
2 2 2
= 844152t — 28944152t + S9452t+2
2 2
= S2¢+259; — S944152t (3.35)
Divide (B.35) by s%,52:41 to obtain,

S2t+1 S2¢42
o 2 (3.36)
Sot S2t4+1

Now consider Lo := (s9;13Q" T v—59: 1 2Q' %V, 5941 3Q'V—59; 1 2Q'1v) and note
that Ly > 0 since Q € S;/'*, then we have the following,

2 2 2
0 < Lo = 8514352141 — 2851952t 43 + 54952643

2 2
= 5244182443 — S21252t+3 (3.37)
Divide (B.37) by sa¢152:+252:+3 to obtain,
S S
2042 _ 52043 (338)

Sot+1  S2t42

Combining (B.36)), (B.38) we find (B.34). O

We consider a similar iteration which can be associated (as we will see) with
(StQP). Start with v(0) € A,, and iterate:

vi(t—{—l):vi(t)M ieU:={1,2,...,m}, t=0,1,.... (3.39)

v(t)TQv(t)
Throughout this section the matrix () € S,,, is assumed to be positive, since from
Corollary itis clear that @) and @+« F have the same strict local maximizers.

A point v = v(¢) is said to be a fixed point of (3.39) if v(t + 1) = v(¢) holds
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in (3.39). It is not difficult to verify that the solution of the following system of
equations gives the set of all fixed points of (B.39),

vi[[Qv]; —viQv] =0, Yiel. (3.40)

Remark 3.50. [t is worth mentioning that the iteration () has a nice
interpretation in theoretical biology and population genetics which goes as
follows (see e.g. [119, 147]). Consider an infinite population of the same species
contesting for a particular limited resource. If we take randomly chosen members
of the population as players then this kind of conflicts can be modelled as a game,
where each player acts according to a pre programmed behaviour termed as pure
strategy. As usual let U denote all pure strategies and let v;(t) be the relative
frequency of the members of the population playing strategy i, at time t. Then the
vectorv(t) = (vi(t),--- ,vn(t))T will denote the state of the system at time t. We
further assume that the sum of relative frequencies is one, i.e, v(t) € A,,. If we
denote the advantage or payoff for a user of strategy i whose opponent is playing
strategy j by q;; then the complete set of payoffs are denoted by a matrix
Q = (qij). In this context the average payoff for the user of strategy i will be
eiQv = (Qv); [119, 147]. In theoretical biology iterations () are known as
replicator dynamics while in population genetics they are called selection
equations.

Here, from a mathematical point of view, we are interested to know if the
iteration () has some monotonicity properties, and whether starting with
an initial point the iteration converges to a strict local maximizer of (StQP) or
not. The answer to the first question is positive. In the literature there exists
many proofs for the monotonicity of the iteration (B.39). Here we will
reproduce the elegant proof of Kingman [103]. Before the proof we provide

some auxiliary results.

Lemma 3.51 (Jensen Inequality). Let f be a convex function on a convex set S C
R. Then forall \; > 0,u; € S;i =1,..., N, with vazl Ai = 1 for N € N we have,

N N
f (Z Ami) <> NS (w)
i=1 i=1

Equality holds if and only if either f is linear or u; = ug = -+ - = uy.

Proof. See e.g. [134]. O
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If we take f(u) = u!,u € Ry,l > 0in the Jensen inequality, then we obtain,

N l
Z )\ﬂL@] S Z Al(ul)l (3.41)

=1 =1

As mentioned before, for [ > 1 equality in () is possible if and only if u; =
uo = --- = uy. Note also that for a,b > 0 we have,

b
a; > Vab (3.42)

Theorem 3.52. Let Q € S,, be positive and let v(t) € A,, not be a fixed point.
Then

v(it+ DTQv(t +1) > v(t)TQv(z).

Proof. First observe that,
V(t+D)QV(E+1) = vt + L)v;(t + 1)gy
A7j

O Qv
=2 ul G >“‘“)v<t>TQvét> &

= w0 TQV 7 sz v () [QV()]:[Qv(1)] a5

In view of the above observation it is sufficient to prove:

> wit) v (O)QVLQV(®)]ai > [v(t) Qv(t))?

i’j
For the sake of clarity we will use v instead of v(¢) in the rest of the proof. Take
L:= 3", ;vvj[QV];i[QV];q;; and note that [Qv]; = >} gixvk. Then we have,

L= v QV];qijqi
i7j7k:

By interchanging j with k£ we obtain the following two equivalent forms of L,

L= Z 00| QV] ;¢ qik = Z 00 [QV] K qij Gk

.5,k i,5,k
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Now adding the two expressions for L we get,

L= viwjony (1QV]; + [@vIasan

Z‘?j7k‘
1 .
> > " vwjor([QV];[@QVIk) 2aijqir  using (B.42)
i?j’k

- Z Yi Z ”j”k([QV]j[QV}k)%%jqz‘k

L 5k
- ~2
:sz‘ ZW([Qﬂj)éC}ij
L Ty
> |30 S vi((Qvl))2ai; | Using (BAT) with i =2 (3.43)
- S
= Z%‘([va)% [quz’j]
¥ x
= Zvj<[Qv]j>?]
- -
> 11D v[Qv); Using (B.41)) with [ = 3/2 (3.44)
- ] 3
= | X wevy| =V’
;

Here we would like to emphasize that the inequality () is strict. In order to
see this, assume that equality holds. Then (in view of Lemma ) forallv; >0
we have [QV]; = « giving that:

2 2 2

Z%([QVL‘)% = Zvj(a): = Q%Z’Uj = o’

N|w
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where we have used v € A,,,. So, also

2 3

o = 3oVl = | X w((Qvl)| = ("ev’.

Hence, we have a = vI'Qv and thus [Qv]; = vI'Qv = « for all v; > 0. This
contradicts the assumption that v is not a fixed point.
For alternative proofs see [22,[116, 137]. O

From the results of Losert and Akin [[109] it follows that the iterations ()
will converge to a fixed point. Now the question arises if the iteration converges
to a strict local maximizer or an ESS. The answer to this question is negative,
since there exist matrices with no strict local maximizers. So it is clear that
starting with some initial point the iteration may not converge to a strict local
maximizer. Now the following question arises. Let the initial point v(0) of the
iteration be very close to an ESS (say V). Will then the iteration converge to v?
The answer to this question is positive.

Theorem 3.53. Let Q € S,, be positive and let Vv € A, be an ESS. Then there
exists € > 0 such that for all v(0) satisfying ||[v(0) — V|| < € we have v(t) — V as
t — o0,

Proof. See [22, Theorem 3]. O

3.6 Genericity
In this section we will discuss so called genericity results for (StQP). First we
will specify what is exactly meant by genericity.

Definition 3.54. We say that a property is generic in the problem set S,,,, if the
property holds for a (generic) subset Q, of S,,, such that Q, is open and S,,\ Q,
has (Lebesgue) measure zero.(So genericity implies density and stability of the
set Q,. of "nice" problem instances).

First consider the following lemma required in the proof of the next theorem,

Lemma 3.55. Letp : R¥ — R be a polynomial mapping, p # 0. Then the set of
zeros of p, p~(0) = {v € R¥ : p(v) = 0}, has (Lebesgue) measure zero (in R¥).

Proof. See e.g. [[16, Lemma 2.8]. O
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In the next theorem we show that generically any local maximizer v of (StQP)
is a strict local maximizer, i.e., an ESS that furthermore satisfies R(v) = S(V).

Theorem 3.56. There is a generic subset Q,, C S, such that for any Q € Q, the
following holds: For any Vv € A,, such thatV is a local maximizer we have,

i. R(v)=S5(v)
ii. Vis a strict local maximizer

Proof. i. Since V is a local maximizer, from the KKT conditions it follows that
R(v) C S(V). Suppose that this inclusion is strict i.e. R(V) # S(V). Then there
exists some j € S(V)\R(V). This means that with R := R(V) the pointVvy € R‘ﬂr

solves the system of linear equations,

<QR> VR =\ (‘“’f) with A := max(QV); (3.45)

4j,R
where ¢; r := (¢;;,! € R). This implies that the determinant of the (|R| + 1) x

(|R| + 1) matrix (g’; ef) is zero.

Consider now the polynomial function p(Q, ¢;,r) := de%ﬁ i ) . Since p(IR,
0) = 1 this function is nonzero and according to Lemma for almost all Q g,
gj.r € RIFEIXUEIFD the relation p(Qg, g;.r) # 0 holds, i.e., there is no solution of
the equation (). Moreover since the function p(Qr, ¢; r) is continuous the
set of parameters (Qr, ¢;,r) With p(Qr, ¢; r) # 0 is open. Since there is only
a finite selection of subsets R C U/ and elements j ¢ R possible, also the set of
parameters () such that for all R, j the condition p(Qr, ¢j,r) # 0holds is generic.

ii. Now suppose that a local maximizer v (by the above analysis we can assume
R(V) = S(V)) is not a strict local maximizer. Then in view of Corollary we
have, det(Qrw) = 0. But by defining the non-zero polynomial

p(Q) := det(Qp()) and using Lemma the conditions det(Qg(y)) = 0 can
be excluded for almost all (. By noticing that also the condition det(Qr)) # 0
is stable with respect to small perturbations of () the condition det(QR(V)) =0
is generically excluded. O

The above theorem immediately implies that generically every symmetric
matrix has an ESS, i.e. :
Corollary 3.57. Theset {A € S, : A has an ESS} contains a generic subset.

Proof. For every matrix A, (StQP) has a global maximizer. By Theorem
generically it is an ESS. O
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4.1

As mentioned before it is common to solve/approximate programs with binary
or general quadratic constraints by considering their semidefinite or copositive
programming relaxations. It is interesting to know how sharp these relaxations
of general quadratic programs are. For the SDP relaxation this has been
answered by [[L05]. In this section we give the corresponding result for the

copositive programming relaxations and more generally for set-semidefinite

Nonconvex Quadratic Programming

OOMING into the intersection of convex and nonlinear
Z programming problems we study a list of problems which are
originally nonconvex but by the use of relaxation techniques these
programs are reformulated (approximately) as convex
programming problems. In this chapter we investigate how sharp
the set-semidefinite relaxations of nonconvex quadratic programs

are.

Introduction

programming, i.e., a cone program over the cone C,(K) (see .2)).

The results obtained are somewhat negative. They roughly speaking say that

1 This chapter is based on [Z]
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without adding extra restrictions into the relaxation we cannot expect the
copositive programming or set-semidefinite programming relaxation of
(nonconvex) quadratic programs to be sharp. To obtain sharper relaxations one
has to consider additional restrictions, e.g., by adding new (convex quadratic)
constraints which are redundant in the original quadratic program. Recent
research has revealed that for several special classes of 0-1 programs such a
sharpening leads to exact copositive programming representations (see e.g.,
[89, 47, 123, 124, 125]). The results in [39] have been extended to
set-semidefinite programs (K-SD) by [40]. In this chapter K C R™ is a given
cone (see (2.2),(2.1)). Future research should show which other classes of
(non-convex) quadratic programs allow similar sharp copositive programming
(or set - semidefinite programming) relaxations. In [10], a set of extra
conditions on the original quadratic constraints is presented which guaranty
that the K-SD relaxation is exact.

Note that exact set-semidefinite programming relaxations of NP-hard
problems evidently are NP-hard. However the set-semidefinite programming
relaxations are convex problems and one may hope that this extra structure
leads to new insight and better algorithms for solving hard (non-convex)
problems.

4.2 Set-Semidefinite Relaxation

We consider (QCQP) given in Section [.5. Although some arguments given
below have already been mentioned in Section @ we shall repeat them for the
sake of completeness. Consider the (nonconvex) quadratic program with linear
objective function and quadratic constraints:

gi(u) <0, jeJ

P, min ¢clu  s.t.
(@) 0 with also: u € K in K-SD case

with quadratic functions ¢;(u) = ~; + 2c?u + uTCju, C; € Sn, jeJ,and J,
a finite index set. We can write ¢;(u) = v; + 2¢] u 4+ u” C;u in the form

T T
gj(u) = <Qj, <111 uuuT>> where Q; = (Zj 2{3) .
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Recall that the relation U = uu’ is equivalent to

Lo

In this setting the original program (QF,) takes the equivalent lifted form:

1 u?
<Q]7< >>§07]€Ja
u U
(QP) min CUTu s.t. 1 u? (1 1 T
u U/ \u u

with also: u € X' in K-SD case

By replacing the (nonconvex) relation (

1
u
(.1, u5 ) € STJ,ZH, or the K-SD relaxation, (

are led to the relaxations of (QP):

1 T
<Qja< ‘;>>so,jeJ
u
(SDP) min cfu  s.t.

1 T
<Qj,<u l;]>>§07j€=]
(K-SD) min ciu  s.t.

u

ut) =(4) (}l)T by the SDP relaxation,
7) €Cha(Ry x K) (see (2.2)), we

In case of a K-SD relaxation of QP we always tacitly assume that the original
program (QP,) and thus (QP) contains the constraint u € K (explicitly or
implicitly). For optimality conditions and more details on K-SD programs and
their dual we refer to [60]. We introduce some notation. Let S denote the set of
quadratic functions defining the feasible set of (Q ) and (QP):

S={Q;:je T}y ={q):jeJ}.

Note that a quadratic function g(u) = 7 + 2¢”u + u? Cu can be identified with
the coefficient matrix Q = (Vc cé) In this chapter, F®&o F& = F(g)
FSPP(S) and FKSP(S) denote the feasible sets of (QP), (QP), the (SDP) and
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the (K-SD) relaxation, respectively. By Fg (S), FsPP(S) and FXSP(S) we
denote the projections onto the u-space R™. Notice that all these feasible sets
defined by a set S of quadratic inequalities coincide with the feasible sets given
by the conic combinations cone (), i.e, F&(S) = F& (cone (S)) etc. From
these definitions we find

FA = FEU(8) = F"(cone (5)) € conv FZT(S).

Since the objective of (QP) is linear, the minimum value on F¢7(S) and on
conv Fl?P(S) coincide. By relaxation properties we have:

conv FEP(S) € FSPP(S) ,  conv FPT(S) ¢ FESD(5)

and also FKSP(S) ¢ FSPP(S) in case (QP) contains the constraintu € K.

We wish to know how sharp these inclusions are. Defining the set of convex

Q+:—{Q—<1 5):0637';}

for the (SDP) relaxation this question has been answered by Kojima and
Tungel in [[105].

quadratic functions,

Theorem 4.1. [105] conv [FET(S)] € F&¥ (cone (5) N Q) = FSPP(S) .

We emphasize that in general the set Ffp(cone (S) N Q) is strictly smaller
than the set 7 (S N Q).

Remark 4.2. In [105], based on the theorem above a conceptual algorithm is
discussed which generates a sequence of sets FiyP* (Sy) which converges to the
set conv []-"l?P(S)]. In each step by solving an SDP a “cutting’' convex, quadratic
constraint <QK7 (lll uUT)> = A 4+ 2(cM)Tu + ul'Chu < 0 with QF € Qy is
constructed in such a way that for Sp.1 := Sp U {Q"} we still have
conv [FET(S)] © FSPP(Sy41) but the set FSPP(S),,1) is strictly smaller than
FIPP(Sy). In the context of our generalization such a procedure is no more
useful. For example in the case of K = R, instead of a SDP, in each step we

would have to solve a (NP-hard) “completely positive program”.

We now are able to extend (partially) the result of Theorem 4.1 to the K-SD
relaxation of QP. The set Q. in the SDP relaxation has now to be replaced by the
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set of " K -semidefinite quadratic functions":

Qk-sp := {Q: (Z cé) :C GCm(K)}

Let us first present an instructive example. Let F¢ ({Q}) be the feasible set
defined by only one inequality

aw) = (@, (32 )) <0,
QR = (zCCT) (and u € K) then:
if C ¢ Cn(K) (ie,qisnot “K-semidefinite) = FSP{Q)) =K.

To see this, note that for C ¢ C,,(K) there exists a vector d € K such that
d”Cd < 0. So, for any fixed u € K with U := Add” + uu” it holds

1 T
<Q’< lllf>>:7+2<;Tu+AalTCcHuTCu<0 for0 <A, Alarge
u

Since U — uu’’ = \dd” € C},(K), Lemma 2.4 implies u € FXSP({Q}). So, the
K-SD relaxation does not provide any restriction apart from u € K. Generally,
the following holds.

Theorem 4.3.  conv [F{'(S)] € conv [FE (cone (S) N Qk.sp)] € FEP(S) .

Proof. The first inclusion holds trivially. To prove the second, we begin by
showing

T
Qlsp = {<2 %) .Be c;;(K)} . (4.1)

In fact, (g l};) € Qk.sp holds if and only if for all (z Cg) € Ok-sp, i.e., for all
v€e€R,ce R™ C € C,,(K) we have

<(§ lﬁ)(z C;>>:ﬁy+2ch+(C,B>20.

This obviously implies 5 = 0,b = 0 and B € C;,(K). On the other hand for any
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(3 °;) ,B € C;,(K) itholds,

(%) ¢ %))-mazo

since C € C,,(K). To compare the feasible sets we can write
K-SD . 1 u” * ~
Fou > (S) = <u: 3U such that u U)€ -5*NC 1 (Ry x K)

and by using the relations (cone(S))* = S*, (K1 N K2)* = K} + K5 (for closed
convex cones) and (#.1]) we obtain

1 u”

F&(cone (S) N Qksp) = {u : << T) ,Q> <0 VQ € cone (S)N QK-SD}

u uu

_ {u . (111 uuuTT> € —(cone (S)N QK-SD)*}
— {u: < uuT> € —(S"+ QE—SD)}
- {u: ( uuuTT> €5 ((? Cfn((;:))}

Consequently, u € FSP(cone (S) N Oksp) holds if and only if with some
u

H € C}(K) we have (iuuTT) + (%‘};) € —S*.  But since

uu” + H —uu” € C*,(K),u € K, by Lemma 2.4 it follows

ul

= =

(=T

1 B
u H+uuT e -5 ﬂCm+1(R+><K).

So (with U = H + uu™), the vector u is contained in the set 7X5P(.9). Since this
set is convex the second inclusion follows. O

To see the difference with the SDP case (in Theorem [1]) let us chose
u € FX50(9), ie, with some U € S, the relation

T
<(i “U> ,Q> <0 forall Q= (Z c;) €S



CHAPTER 4. NONCONVEX QUADRATIC PROGRAMMING 83

must hold. Then we also obtain

e 2) =6 v) 9w o)
<{C, (ua” - 1))

Unfortunately the converse of Lemma @ isnot generally true. So here, even with
Q € cone(S) N Qksp, i.e, with C € C,,,(K), the relation (C,uu’l — U) < 0 need
not hold and u need not satisfy the corresponding original constraint (C, uu”) +
2c’u+~ < 0. We give some examples to illustrate the statement of Theorem @
and to show that in general (for K # R™) the situation is more complicated
than in the SDP case (for K = R™).

Example 4.4. We chose K = R}, i.e, the completely positive relaxation. Let us

take the special case S C Q k.sp. In contrast to the SDP relaxation the set }]?P(S)
need not be convex. So, an inclusion F¥S°(S) c F§F(S) is not true in general.
Even FKSP(S) < conv [F(S)] need not hold as we shall show. Theorem i3 only

assures conv [F& (S)] € FESP(S). Even in the case S = {Q} with Q = (Z cé) €
QO ksp the inclusion can be strict. Take for example

oo

The feasibility conditions read:

N[

), c=(-25,-2+4p), v=8.

NO[— =

1
for FE{Q}) i(u% +u3) + 2ujug — 5up — (2 — p)uz +8 <0, andu € R%

1
for F*P({Q}) 1§(U11 + Usz) 4+ 2U12 — 5u1 — (2 — p)ug +8 <0,
1 u? o
and <u U) € C3(RT)

We have computed the feasible sets. For p = 0 the set ]-"SP({Q}) consists of the
point (0,4) together with the convex (black) set (see Figure . The set
FESD({QV) equals the (grey) triangle conv[F§" ({Q})]. For p > 0 (small) the
point (0,4) is no more feasible for F& ({Q}) (black) and the (convex) set
FESP({Q}) (grey) (depending continuously on p) is as sketched in Figure .2 (for
p = 0.2). Obviously in this example p = 0.2 we have

FEHQY) = conv [FI{Q})] & FaP({Q})-
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Figure 4.1: F& ({Q}) for p =0 Figure 4.2: &' ({Q}) for p = 0.2

For the other special case S N Q k.sp = () we have:
conv [FF(cone(S) N Q.sp)] € F3P(S) € conv [FEF(SN Qksp)] = R .

The equality on the right-hand side follows by the assumption S N Q g.sp = 0, so
that the feasibility condition for F&* (S N Q k.sp) reduces tou € K = R,



Copositive Programming via Semi-infinite
Optimization

standard way to tackle new problems in mathematics
A is to formulate them in a well known form and utilize the
machinery available to solve the problem. In this chapter copositive
programming (COP) is viewed as the special case of linear
semi-infinite programming. @ We start in the first section by
formulating a copositive program as a linear semi-infinite
program(LSIP). In section two, first order optimality conditions and
duality results of LSIP are applied to COP leading to known results
but also to new insight. In section three, we reinterpret
approximation schemes for solving COP as discretization methods
in LSIP. This leads to new explicit error bounds between the
approximate and the original problem. Section five gives error
bounds for the maximizers in dependence on the order of the
maximizer of the original program. We also show by examples that
maximizers of arbitrarily large order can occur in copositive
programming.

1 This chapter is based on [fl]]
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5.1 LSIP Representation of COP

In this section we shall reformulate COP as LSIP. First recall the pair of primal/
dual copositive programs (COP) from Chapter [ﬂ,

n
(COPp) }1361%% c'x st. B-— Z;szz e Cp
1=
(COPp) l;n}gn (Y, B) st. (YJA)=c¢ (i=1,...,n), YeC;,
ESm
We assume throughout that the matrices A; (¢ = 1,...,n) are linearly

independent. Recall also our standard form of linear semi-infinite primal/dual

programs,
(SIPp) max c’'x st. b(z)—a(z)'x>0 VzeZ,
XeR™
SIP i P L. z =6 Yz Z 5
(SIPp) min} y:b(z) st Y yea(z) =¢ o >0
zeZ zeZ

Note that the condition A € C,, can be equivalently expressed by either of the
conditions:

z'Az>0 VzeB,:={zcR]:|z|=1} (unitorthant),

i=1

m
z'Az>0 Vze A, = {z e R} : Zzi = 1} (unit simplex).
In view of this relation, the primal COP can be written as a (SIPp) with

a(z) = (zF Az, ..., 27 A,2)T, b(z) =2'Bz, and Z € {B,,An}. (5.1)

In this chapter, we always take Z = A,,, and defining
n
F(X) =B - szAz
i=1

we write the copositive primal problem (COPp) in the form:

(COPp) max c’x st. Z'F(X)2>0 Vz € Z:= A, (5.2)
XeR"™
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In view of (E.1)), the feasibility condition for (SIPp) becomes

= ya(m A) (i=1,...,n), 9. >0
VA4

and with Y := Y, y. zz' € C}, this coincides with the feasibility condition
¢ = (Y,4;) (i=1,...,n)of (COPp). Moreover,

> yb(z) =Y y.(zz", B) = (Y, B).

zeZ VASVA

So, the dual (SIPp) of (COPp) in LSIP form (5.2) is equivalent to the COP dual
(COPp) and we simply denote both versions by (COPp).

We shall close this section with an observation on the number ofisolated active
indices a copositive program can have. Consider the following program,

(COPg) max x s.t. —Q—zFE €Cp
xe

where @ € S, with m = 3n for n > 2 as considered in Example B.47. The LSIP
formulation of the above program is,

max x s.t. b(z) —a(z)x >0Vze A,

zeR
where b(z) = —z'Qz, a(z) = z'' Fz = 1. Note that in x < —z'Qz, for all
z € A, equality holds if and only if = — max,c,, 2’ Qz. Recall from Example

that maxzen,, 2 Qz = ”T_l Moreover, there are 3’3 strict local maximizers

T : n—1
of maxzcp,, z* Qz with value *—=.

In view of Definition itis clear that the set of active indices of the solution
T = —”T_l of the above program reads:

Z(@) =1{Z€ A :T= -7 QZ} (5.3)

From () it is clear that the isolated active indices of the copositive program
(COPg) are precisely the strict local maximizers of z' Qz over A,,, which are
3% in total as mentioned above implying that |Z(Z)| = 3%. Hence, the
copositive program can have an exponential number of active indices. This fact
also indicates that solving (COPp) is “hard".
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5.2 Optimality Conditions and Duality

From the LSIP form of COP, clearly, any result for LSIP can directly be translated
to COP. We will do this for some optimality conditions and duality results.

As mentioned before, optimality conditions for LSIP are usually presented in
terms of KKT conditions for a feasible candidate maximizer X.

Using (B.1]), for the copositive problem in LSIP-form (5.2), the KKT conditions
for LSIP ([13) translate to

k k Z;“FAlzj
c=Y yalz) = vy : . Z; € Z(X),y; >0(=1,....k).
g=1 7=l z] Anz;

(54)
It is important to note that any solution of the KKT system with feasible X,

automatically yields a minimizer Y of the dual program (COPp):

k
Yi=> yzz] €C,. (5.5)

j=1
Observe that, by Carathéodory's Lemma for cones (see, e.g, [63]), we can
assume that

the KKT condition (5.4) is satisfied with & < n active points z; € Z(X). (5.6)

This implies that the dual minimizer Y allows a representation (@) with k£ < n,
ie,Y € C* has CP-rank < n.

Before applying the standard results of LSIP to copositive programming, we
have to translate the primal/dual constraint qualification (Slater condition) from
LSIP (see Definition ) to the copositive terminology.

Lemma 5.1. Consider the copositive problem in its LSIP-formulation (5.2). The
primal LSIP constraint qualification

(CQp) : z' F(x¢)z > 09 > 0, forallz € Z and for some oy > 0 (5.7)

is satisfied for xo € R™ if and only if F((xq) € int(C,,). The dual LSIP constraint
qualification

(CQp) : ceint(M), withM :=cone{a(z):z€ Z}
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holds if and only if there exists Y feasible for (COPp) such that Y € int(C})).

Proof. The fact that (5.7) implies,
F(xp) € int(Cy,),

follows immediately from (@).

For the converselet F'(xo) € int(C,,). Then there existse > Osuchthat ' € C,,
forall F with ||F—F(x)|| < e. Define F' := F(xo)—ﬁf. Then ||[F—F(xo)|| < e
and thus F' € C,,. Consequently,

€
0<z'Fz=12"F(x)z— ——2'z forallzec Z.
B \v/m
Usingz’z > L forz € Z, we obtain z” F(x)z > ﬁ =:00 >0forallz € Z.

To prove the equivalence of the dual constraint qualifications we define the
mapping c(Y) := ((41,Y),...,(A,, Y))T. We first show that

Yec, = cY)eM. (5.8)

To see this, note that Y € C;;, has a rank-one representation ¥ = Z§=1

with o # v; € R} forall j = 1,..., k. Define z; := v;/(v] e) to obtainz; € Z,

w7
VjV;

and y; := (v e)® > 0. Then Y = Z?:l yjZ;Z] . Therefore we get

k k

(V)= yj((Ar,22]), ..., <An,zjz;f>)T => yja(z;) € M,

j=1 j=1

and (.8) is proved. Now let Y; € int(C?,) be feasible for (COPp), i.e., ¢(Yy) = c.
To prove ¢ € int(M) we assert that there exists some ¢ > 0 such that, for any
v € R, |v| < ¢, the relation

¢ + ver € M holds for all (standard basis) vectors ey, (k =1,...,n). (5.9)

To show this we note that, since the A;'s are linearly independent, for any k the
linear system c(Y) = ((A1,Y3),..., (A, Yi))T = e has a solution Y, € S,,..
Since Y € int(C},), there exists some ¢ > 0 such that for all v, |y| < e:

Y, =Yy +7Y, €Ck forallk=1,...,n

Using (5.8) and ¢(Yp) = c we get M 3 ¢(Y},) = ¢(Yo) +v¢(Yi) = € + yex, which
proves (@).
We finally show that (CQp) yields some Y feasible for (COPp) with Y, €
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int(C;,). To do so, choose any Y, € int(C},) and define:
b:=c(Y.) = (A1, Ya), ..., (An, YT,

Since ¢ € int(M), we have for some ¢ > 0 that c — b € M, which means that for
somey; > 0,z; € Z(j =1,...,k) we have

k k
c—cb= Z yja(z;) = Z yjc(zjzjr).
j=1 j=1

Defining Y := Z§:1 yjzjz]T € Cr,, we find that ¢(Y') = ¢ — b by construction.
Next, define Yy := Y + €Y,. Then Y) € int(C},) because Y € C},, Y, € int(C})
and C;, is a convex cone. Moreover, ¢(Yp) = ¢(Y) + ec(Yy) =c—eb +cb = ¢,
which means that Yj is feasible for (COPp). This completes the proof. t

We emphasize that relation (@) implies that, under (CQ p) to any maximizer X
of (COPp), there always exists a corresponding (complementary) optimal
solution Y of (COPp) that has CP-rank < n. Similarly the duality result for
LSIP, Theorem [1.13, can be applied to copositive programming.

5.3 Discretization Methods for COP

Due to the LSIP representation of COP, any solution method of LSIP can directly
be applied to COP. In this chapter, we only consider discretization methods. An
inner and outer approximation algorithm for COP has been proposed and
analysed by Bundfuss and Diir [38]. We re-analyse this approach in the light of
discretization methods in LSIP as outlined in [[144]. This will lead to additional
insight and explicit error bounds.

We start with the COP in LSIP-form (@) with Z = A,,,. The approach in [38]
is based on the following partition of A,,.

Definition 5.2. We partition the unit simplex Z = A,, into finitely many sub-
simplices A, ..., A¥ of A,, such that

k
A, = U Al and int(AY) Nint(AP) = for I # p.
=1

This partition defines a meshsize d, a discretization Z; and a set E,; of “edges"
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(pairs of vertices):

Zy ={v; : v is a vertex of A! for some [}
Eq ={(vi,v;) : v;,v; are vertices in the same A’ for some [ (possibly i = j)}
d =max{||v; — vj|| : (v;,v;) € E4}.

In [38], the following outer and inner approximation schemes for () are

given:

(Py) max cI'x st Z'F(x)z>0 Vze Z,,
xeR”

(Py) max c'x st uTF(x)v>0 Y(u,v) € Ey.
XER?

Note that (P,) represents a special instance of a discretization scheme in LSIP.
(ﬁd) provides feasible points for the original copositive problem (COPp),
see [B8] and below. Observe that both (P,) and (P,) are linear programming
problems.

Remark 5.3. Note that any pointz € Z = A, is contained in one of the
sub-simplices A! and thus z € A! can be written as a convex combination
z = >, AV, with), A\, = 1,\, > 0of vertices v, of Al. Consequently, for
any z € Z, the inequality ming,cz, ||z — z;|| < d holds so that d above really
defines a meshsize:

d > max min ||z — z;]|.
VASYA ZjEZd

In the following, the vector X is always a maximizer of (COPp) and X4, X, are
feasible points (possibly maximizers) of (P;), (P,). We are now going to discuss
some of the convergence results of [144] for our special program (COPp) in
terms of the meshsize d in an explicit form. The proofs are independent and
mainly based on the following two relations: For any F' € §,;, and z,u € R™ we
have

z’Fu=1[z"Fz+u ' Fu- (z—u)F(z-u). (5.10)

Moreover, as mentioned earlier, for everyz € A! C Z we have the representation
z =) _,\V, withv, the vertices of Al )\, > 0,and >, Av = 1. This gives:

ViFv, >, Y(v,,v,) €EBs = 2Z'Fz=) MAVIFv,>7 VZe Ay,

i
(5.11)
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Clearly, F(COPp) C F(P,) holds, and using (5.11) for v = 0 we obtain the
relations

F(P;) € F(COPp) C F(P;) andthus wal(Py) < val(COPp) < val(P;).
(5.12)
We are interested inaccurate bounds,e.g, for wval(P;) — val(COPp)and
val(COPp) — val(P,), depending explicitly on the meshsize d. From [144], we
know that even for nonlinear LSIP under a constraint qualification, the
approximation error between F(COPp),val(COPp) and F(Py),val(Fy)
behaves like O(d?) in the meshsize d, provided that the discretization Z; of Z
“covers all boundary parts of Z of all dimensions". In the above discretization
scheme this is automatically fulfilled.
The nextlemma shows that the inner approximation (ﬁd) yields points feasible
for the original program (COPp) and the outer approximation (P,) generates
points with an infeasibility error of order O(d?).

Lemma 5.4. Let Xy, X, be feasible for (P,), (P,). Then forallz € Z and for all d
we have:

(@) z'F(Xg)z > —3||F(Xa)] - &
(b) z'F(X3)z > 0.
So X is feasible for (COPp), and X is feasible up to an error of order O(d?).

Proof. Let F = F(Xy). Usingz” Fz > 0 forallz € Z, we find from (6.10) that
forall (z,u) € Ey
z’ Fu=1[z"Fz+u ' Fu- (z—u)F(z - u)]

> —3z-w'Fz-u) > —3|F||z-ul?

[\
—

The second inequality follows from the fact that with the 2- norms the relation
| Fz|| < ||F||||z| holds. In view of (5.11)), this shows (a). Letting F := F(Xg), (b)
follows from (5.11]) with v = 0. O

Assuming a strictly feasible point xq we show that small perturbations of any
feasible point X, for (P;) leads to points in F(COPp) or even F(Py).

Lemma 5.5. Let (CQp) be satisfied for xo € F(COPp) with oy > 0 (see (5.7)).
Then for any X, feasible for (P;) and d small enough we have:
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(a) X :=Xy+ pd*(xg — X4) € F(COPp) for p> % and 0 < pd? < 1

g _ 5 1P
(b) X; = Xg + 7d% (%0 — Xa) € F(Fa)  for 7 2 srpaqrag-reen 91
0<7d?<1

Recall that F(P;) C F(COPp) holds, cf, (5.12).

(c) IfXqis a solution of (Py), i.e, ¢'Xq = val(P,) it follows
0 < val(Py) — val(Py) < 7[cT(Xg — x0)] - d2 for T satisfying the bound
in (b).

Proof. Recall that (CQp) means that z/ F(x9)z > o9 > Oforallz € Z. Using
this, the fact that F(X};) = (1 — pd?)F(Xy) + pd®>F(xXo), and Lemma .4, we see
that foranyz € Zand 0 < 1 — pd?,

' F(X3)z = (1 — pd®)z" F(Xy)z + pd®z! F(xo)z
> (1 = pd) |F(R)]| - &2 + pd?o0
> d*(poo — 3| FXa)ll)-

which shows (a). Part (b) is proven similarly. Here, observing
F(X;) = (1 —7d*)F(Xq) + 7d*F(x0),
for any pair (z,u) € Ey, we find using (5.10), z" F(x0)z > ogand z” F(X3)z > 0
~ 1
z' F(X5)u = (1 — Td2)§[zTF(id)z +ul F(xg)u — (z — w7 F(Xy)(z — u)]+

+ a2t 5 (2" F(xo)z+u" F(xo)u — (z — w)" F(x0)(z —

1 F(xp)
—(1 = 7d*) S| F (%) d2+rd2< - plE®) >

- (B oy Sl - 1P ] ) 20

if 7 is chosen as stated (assuming || F(xo)||d> < oo, implying 7 > 0). The
inequality (c) for the maximum values is deduced easily using that X, is feasible
for (Py):

0 < val(Py) — val(Py) < ¢"'(Xg — x5) = [¢T (Rg—x%0)7] - d°. O

Observe that the bounds in Lemma @(C) depend on the actual solutions X, of
(Py). In order to use these bounds (a-priori) we must assure that the solutions
X, exist and that they are bounded. As we shall see below, the key assumption
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here is a dual constraint qualification. We define the distance between a point x
and the set S(COPp) of maximizers of (COPp),

d(x,S(COPp)) := min{||x —X|| : X € S(COPp)}.

Under feasibility of (COPp) the existence of solutions X; of (P;) and the
convergence towards S(COPp) follow by only assuming the dual constraint
qualification (CQp), or equivalently, the boundedness of the level sets
Fo(COPp) (or the condition § # S(COPp) compact), see Theorem [1.13.

Theorem 5.6. Let (COPp) be feasible and let (CQp) be satisfied. Then for any
meshsize d small enough, the sets S(P;) of optimal solutions of (Py) are nonempty

and compact. Moreover, for any sequence of solutions X; € S(P;) we have (X,
S(COPp)) — 0ford — 0.

Proof. See [[L08, Theorem 9] for a proof. See also [38, Theorem 4.2(b),(c)]) for a
proof under slightly stronger assumptions. O

Since the feasible set 7(C'OPp) may consists of a single point, it is clear that, in
order to ensure the existence of a feasible point the inner approximation (F;), we
have to assume that 7(C'OPp) has interior points (see also [38, Theorem 4.2]).
Theorem 5.7. Let (CQp) and (CQp) hold. Then for any meshsize d small enough

the sets S(Pd) of optimal solutions of(Pd) are nonempty and compact. Moreover,
for any sequence of solutions X € S(P,) we have §(X4, S(COPp)) — 0ford — 0.

Proof. 1f (CQp) holds for X, then we find from (5.10) that for all (u, v) € E,; and
d small enough
u'F(xo)v = [l F(xo)u+ v F(xo)v— (u—v) F(xo)(u—v)]
> o — L F(xo)] - d? > 0.
Hence X, € F(P,) if dis small. By (CQp) the level sets F,,(COPp) are bounded
(compact) (see Theorem [L.13). Since F, (Pd) C Fa(COPp) (see (65.12)), also
the level sets 7, (Pd) are bounded. Therefore, solutions x; of the linear programs

(Py) exist and the sets S(P;) of maximizers are nonempty and compact.
Suppose now that a sequence X, of such solutions does not satisfy

§(Xq,, S(COPp)) — 0 for k — oo.
Then there exists ¢ > 0 and a subsequence X;, such that

5(§dku,8(COPp)> > € Vu. (5.13)
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Since the minimizersx,, areelements ofacompactset.F,(COPp)we canselect
a convergent subsequence and without loss of generality we can assume,

idk” —Xe fa(COPp) forv — oco.

In view of Lemma 5.5 (c) we have val(P;) — val(P;) — 0 and thus, by (5.12),
val(Py) — val(COPp), d — 0.
This yields,
cTide = val(Py, ) — c’'x = val(COPp), v — o0

and since X € F,(COPp) is feasible for (COPp) we obtain x € S(COPp)
contradicting (). O

The next example shows that it may happen that every program (F;) and (]Sd)
has a solution while no solution of the original program (CO Pp) exists.

Example 5.8. Consider the copositive program ( based on [30, Theorem 3.1]) with
c=(1,1,0)" and

1 0 0 100 0 00 0 00
B=[0 0 —-1],4=|00 0],4=(01 0],43={0 0 0
0 -1 0 0 00 0 00 0 01

Then (COPp) becomes:
max z1 + x2 s.t. F(x1,x9,23) := 0 —x9 —1]€C;3.

The feasibility conditions for this program read:
1 <1, 22<0, 23<0, wowg>1.

Obviously, x1 + xo < 1 holds for any feasible X and for any ¢ > 0 the point X =
(1, —¢, —1/€)T is feasible with objective value w1 + xo = 1 — €. On the other hand,
no feasible X exists with objective T, + T3 = 1 (x3 = 0 is excluded). So, the sup
value of (COPp) isval(COPp) = 1 but a maximizer does not exist. Now, consider
the program (Py):

(Pd) max ri +xa Ss.t. zTF(xl,xg,acg)z >0 VzeZz,
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where Z, is any (finite) discretization of Ajs containing the basis vectors
z=e¢; € R3 i=1,2,3. Then (Py) in particular contains the constraints

el F(z)e;>0,i=1,2,3 or 1—2;>0,2,<0, 23<0.

This implies 1 + xo < 1. So, the linear program (P;) is bounded and a solution
exists. In fact, any program (Py) has a solution X; = (1,0,73(d))” with objective
value val(Py) = 1 (and Z3(d) — —oo for d — 0).

Note that also the inner LP-approximations (]5(1) have solutions. Indeed, since the
feasible sets F(P,) are contained in F(COPp), the values val(F,) are bounded
by 1. Moreover the feasible sets are non-empty. To see this take e.g. the (CQp)
-point xo = (0,—2,—2)7" in the interior of F(COPp). Then, as in the proof of
Theorem lﬁ it follows x¢ € ]-"(Pd) provided d is small enough.

We finish this section with some remarks. Note that for any solution X of the
standard linear program (FP,) the KKT condition holds:

c= Zyj - (ijAlzj, s z]TAnzj) , forsomey; >0, z; € Z4(Xs) , (5.14)

where Z4(X4) = {z € Zg : z'F(X4)z = 0}. Again, any such solution X,
generates a dual feasible matrix

k
?d = ZijjZ? S .F(COPD),
j=1
such that
(Y4, B) = val(Py) > val(COPp) > val(COPp).

Remark 5.9. Any solution X, of(]gd) also satisfies the KKT condition
S
C= 237] : (u;‘FAlvj, - ,ll]TAan) , ]Ajj >0, (llj,Vj) S Ed(id), seN,

where Eq(Xg) := {(u v) € By : ul F(Xq)v = 0}. Such a solution X4 generates the
matrixYy == 35, Yj- 2(u]vT—i—vju ) which satisfies the constraints (Yy, A;) = ¢;

for all i. However, in general, Y ¢Cr,so Y is not necessarily feasible for (COPp).
Using (-) we see (under the assumption of Theorem @) that Y, isinC;, up to
an error of order O(d?).



CHAPTER 5. COP VIA SIP 97

5.3.1 Comparison with an Inner Approximation

In this subsection, we consider a special discretization scheme first considered
in [47] which is connected to an inner approximation of C,, by subsets
C;, C Cpm. Forr € N, let us define

Ch =< AeS, Z am (Z xk,) has non-negative coefficients

i,j=1

The following is shown in [47] :

¢ cCtlc... cCp and cl(hm cr) = Cp.

T—00
The interesting connection with the discretization approach above is based on
the following description of the sets C;, (see[28]),
2 ={A€cS, vl Av—vT diag(A) >0 forall vel}, (5.15)
where I, is the grid I}, = {v e N : 377" | v; = r}. By (6.15), we can write,
2={A€eS, 2" Az 12" diag(A) > 0 forall z€ Z) := 1l }. (5.16)

Remark 5.10. Note that the cone CT, % can be seen as the special instance of the
generalised cone, C,, (K, «) (see (2.4)) by taking K = cone(%]lfn), o= % In this
setting the dual of C% is given by

r—2% __ _1 ; . .
C, {UGS U = Zu, 7nDlag(uZ)),quK .

Itis not difficult to see that the set Z9 := %]I;l defines a uniform discretization
of the simplex Z = A,,, with meshsize of Zg given by

d = max min lz; —zi|| = Q

1
z; €71, z€1,, 22

So it is natural to compare the outer and inner approximations (Py), (P;) of
(COPp) in Section with the following approximations, where d = +/2/r,
r € N:

(P;) maxc'x st z'F(x)z — Lz’ diag(F(x)) >0 Vz € Z). (5.17)
x€R™ V2
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Note that, by (5.16)), a point x is feasible for (P;) if and only if F(x) € "2 So
(P,) provides an inner approximation, i.e, F(P;) C F(COPp) and val(P;) <
val(COPp). Similar to Lemma 5.5 we obtain

Lemma 5.11. Let (CQ p) be satisfied for xo € F(COPp). Then with the solutions
X4 of (Py) (with discretization Z, = Z3) the following holds for all d = @, reN,
d small enough:

X =X+ 1d(x0 — Xg) € F(P;) € F(COPp)

and R
0 < wal(Py) — val(Py) < 7[c’ (Xg — Xo)] - d

; || diag(#' (X))l
ifr > V300 —d| diag(F(xo)] and0 < 7d < 1.

Proof. We use the relation F(X};) = (1 — 7d)F'(X4) + 7dF(Xo) and proceed as in
the proof of Lemma 5.5, By Lemma 5.4, using the relation ||z|| < 1 forz Z9
and z' F(X,)z > O forz € Z; = Z3, we obtain for any z € Z9:

' F(X)z — %ZT diag(F (X)) = [(1 — 7d)z" F(Xy)z + 7dz’ F(xo)z

<
— 4-(1 - 7d)z" diag(F(Xs)) — 792" diag(F ()]

> rdog — 45 (1 - 7d)|| diag(F(%a))|| — 7% | diag(F (xo))|
> [ (0 - 25 aagria) ) - 1R EEDL 5 o

for any d > 0 (small enough) if 7 is as given above. This shows the first relation.
The inequality for the maximum values follows again easily using that X}, is
feasible for (P;) :

0 < val(Py) — val(Py) < c!'(Xg — %) = [¢7(Xg — X0)7] - d O

According to the analysis above, under the assumption that the sequence X;, d —
0, is bounded (cf., Theorem @), we have established the following error bounds
(the last bound holds for Z9 = %Ym withd = v2/r, r € N):

0 <val(Py) — val(COPp) < O(d?),

0 <val(COPp) — val(Py) < O(d?),

0 <val(COPp) — val(Py) < O(d).

The next example shows that the bound O(d) for (P,) is sharp.
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Example 5.12. We consider the program,

1 -1 0 -1
(P) max z s.t. F(x) := <_1 1 > +x <_1 0 ) € Co.

The maximizer of (COPp) isT = 0 with val(COPp) = T = 0. The corresponding

unique active index isZ = (3,3)7. Foroddr = 2l + 1 andd = \/2/r, the

discretization Z of Z = Ny = {z € R? : 21 + 2 = 1} is given by

Zgz{z(A) ::)\<(1)>+(1—)\)<2) A=t izO,...ﬂ"}.

It is not difficult to see that the optimal solutions of (P;), (ﬁd) are given by the
solutions T4, &4 of the equations
Z l ' F(z)z ! =0
20+ 1 P\ur1) T

Z <2ZZ+1>TF(:B)Z <2ll+1> - \%z <21l+1>Tdiag F(z)

respectively. After some calculations we obtain val(Py) = Tq = % - 5 = O(d?)
and

Il
o

~ V2d [1 202 +1 1

val(Py) = &9 = — 5 + 200 + 1):| + A0+ 1) = —V2d + O(d2) = O(d).

Let us finally compare the inner approximations (P;) and (P;). It is not

difficult to show that the number of points in the discretization Z{ for d = (T‘g)
(approximation by C;, see [154]) are given by N := (m+:_1). To obtain a

corresponding inner approximation (P;) one could think of the so-called
Delauney triangulation (by simplices) of the point set Zg. The number of edges
in such a triangulation is “much smaller" than N? (edge from each point to
each other, instead of edges only to “neighbouring points"). So (for fixed m)
the same order of approximation O(T%) (wrt. r) would require “much less"
than N2 = (mtf*l)Q constraints in (P,) and (mtf;*l) constraints in (P;). This
can be seen to be in favor of the scheme (P;).

Interested in an inner approximation, one could also avoid both inner

approximations (P,), (P;) and only make use of (P;). Indeed, the a-posteriori
error bound of Lemma @ allows us to construct a feasible point
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T = Tq+ O(d?) from the “outer approximation" Z if a strictly feasible point
Xq is available.

We wish to emphasize that in practice, the pure discretization methods have
to be modified to a so-called exchange method where (as in [38]) during the
computation only those grid points in Z; are kept in the discretization which
still play a role as candidates for the active points z; € Z(X) of a solution X of
(COPp) (see also [108]). For such exchange methods the bounds obtained

above remain valid.

5.4 Order of Convergence for the Maximizers

In this section, we shortly discuss error bounds for ||X — X4]|, [|X — X4]|, [|X — X4]|
for the maximizers of (Py), (]Bd), (ﬁd), respectively. These bounds are based on
the concept of the order of a maximizer. A feasible pointx € F(COPp) is a
maximizer of (COPp) of order p > 0, iff with some v > 0,e > 0

x> c'x+q|x — x| forall x € F(COPp), |[x—X| <¢ (5.18)

holds. Note that, ifX is a maximizer of order 0 < p, in particular, S(COPp) = {X}
is nonempty and compact. So, by Theorem the condition (CQp) is satisfied
and we can apply Theorem @

Corollary 5.13. Let (CQp) be satisfied and let X be a maximizer of (COPp) of
order p > 1. Then for the maximizers Xy, Xq, Xq of (Py), (Py), (Py), respectively,
we have:

X — X4l = O@d¥?),  |[R—Xg|| = O@¥?), R —%x4] = OdP).

Proof. Recall from Lemma .5(a) that X; := X, + pd?(Xg — X4) € F(COPp) for p
large enough. Using (5.18) and c’'(Xx—%,) < 0we get (X} is feasible for (COPp)),

- = Tie < T < T <
Ix-xglP < L' (x—-x5) = Le'(x— %)~ L’ (x0 — Xq)
< Ldc"(Xg—x0) < O(d)

or |[X — Xj|| < O(d?/P). We thus find using 1 < p,

X —Xq|| < [IX — X3 + [1X5 — Xall
< O(d*?) + O(d?) = O(d?/?) .
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The other bounds are proven in the same way. For X;, e.g., we obtain using

Lemma

% = Xal| < [|X — x5 + (1% — Xa]|
= O(dY?) + O(d) = O(d/?) .

According to this corollary, the smaller the order p of the maximizer X, the faster
is the convergence. The following examples show that for copositive programs
(COPp) (unique) maximizer of order 1,2 and of arbitrarily large order can occur.

Example 5.14. Obviously, in Example @ the maximizer * = (0 is of order p = 1.
Considering the copositive program:

—X1 X2 0
(P) max r; st F(x):==| za2 1 0 | €Cs,
0 0 —X9

we see that X is feasible if and only if —x1 > 0, —x2 > 0 and —z1 — :1:% > 0 hold, or
21 <0, 22<0, z<—a3.

The maximum value is x; = 0 implying x5 = 0. So X = (0,0)” is the unique
maximizer. For the feasible points x = (—x3,22)T, 9 < 0 (|z2| small) we find
with ||X||oo = max{|z1], |z2|}:

T

c’'x—cr

.2 2
X = 5 = [|x[|5.
and X is a maximizer of order 2. Now, we take the program,

—x1 T3 0 0
o 1 0 0
(P) max z; st F(x):=| 0 0 —x2 z3
0 0 T3 1
0 0 0 0 —z3

0
0
0 € Cs.
0

In view of the block structure of F(X) a vector x € R? is feasible if and only if:

Thus X = (0 0 O)T is the (unique) maximizer and with feasible vectors x =
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(24 —a3 .’Eg)T x3 < 0 (|z3| small) we find,

Te _ Ty 4 _ 4
CX-CX=23= HXHoov
showing that X is a maximizer of order 4. Similarly we can construct copositive
programs with maximizer of arbitrarily large order.

Remark 5.15. In [28, Section 3], approximation results have been established for
the values v* = mingenp,, z” Az with A € S,,. Note that v* is in fact the value of
(StQP) where maximization is replaced with minimization. We briefly show that
these bounds appear in our result above as special instances. Obviously v* is the
value of

(COPp) max z st. ZH(A—az)z>0 Vz € Z := A,
Te

with dual

D in (Y,A t. Y, I)=1 Y ..

(D) i (A st (VD=1 YeC,

Obviously, (CO Pp) satisfies (CQ p) with some X (small enough) and also (CO Pp)
has strictly feasible matrices Y, (with any Y € int(C},)) take Yy =Y /(Y,I)). LetX
be the solution of (COPp) and consider the approximations (Py), (P;) defined by
the grids Z3 (d = V/'2/r) with corresponding values vq, V4 and solutions X4, Xg. It
is easy to see that these solutions must be unique, satisfy Xo < Xg < X < Xy and
are monotonic, Le, Xg T X,Xq | X for d — 0. Then by Lemma @[a) we obtain
the bound

o _ IF&a)ll
" =

0<Vg—0" =%, —X<X;—X (Xq — x0)d>.
20‘0

and Lemma [5.11 yields
0<v" =V <Vg—Vg<Xg—X; < 7(Xg—X0)d .

The latter gives (up to a constant factor) the bound in [28] and the first bound yields
a O(d?) error instead of a rate O(d) in [28].
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Summary

In this thesis, copositive programming and problems associated with copositive
programming are studied. Copositive programming refers to the following:

T _ AL
(COPp) max c'x st. B ;x,A, €Cp
(COPp) Ymgn (Y, B) st. (YJA)=¢ Yi=1,---,n, YEC,,
€Sm

where C,, and C;, are, respectively, the cone of copositive and completely
positive matrices defined below,

Cm:={A €S, v Av > (O forallv € R},

N
Cr = {AeSm:A:Zbkb{withbk eRm,NeN}.
k=1

In the last decade copositive programming has gained much attention. A main
contribution is the result of Burer [39], saying that mixed binary continuous
optimization problems can be reformulated, exactly, as a copositive program.

Associated with the feasibility problem of copositive programming is the
standard quadratic program (StQP). We have given a particular attention to this
problem. We have provided a characterization for a KKT point to be a strict
local maximizer of StQP. We have also analysed the effect of small
perturbations, in the matrix involved, to strict local maximizers of StQP.

Strictlocal maximizers of StQP are related to the notion of evolutionarily stable
strategy (ESS). In fact, for a symmetric matrix a point is a strict local maximzier
of StQP if and only if it is an ESS. We have shown that for a symmetric matrix,
with each principal submatrix nonsingular, there always exists an ESS. Moreover
the existence of an ESS in symmetric matrices is a generic property.

A matrix Q € S,, is said to be set-semidefinite if v.:Qv > 0 holds for all v €
K C R™, The set of all set-semidefinite matrices forms a cone called the set-
semidefinite cone. Cone programming problems over a cone of set-semidefinite

113



114 Summary

matrices are called set-semidefinite programs.

Hard optimization problems can be (approximately) reformulated by cone
programming relaxations. This reformulation provides bounds for the original
problem. In this thesis we have analysed the sharpness of set-semidefinite
programming relaxations for quadratically constrained quadratic program
(QCQP). The result we have obtained is somewhat negative. It roughly speaking
says that without adding extra restrictions into the relaxation we cannot expect
the set-semidefinite relaxation of (nonconvex) quadratic programs to be sharp.

Mathematical programming can be classified into finite and infinite problems.
A special case of infinite problems is given by semi-infinite programming,
where the number of constraints are infinite while the number of variables are
finite.  In this thesis we have considered the following primal linear
semi-infinite programming problem,

(SIPp) max c'x st b(z)-az)Tx>0 VzeZ,
with an infinite compact index set 7 <C R™ and continuous functions
a:Z — R'andb : Z — R.

An alternative condition for a matrix ) to be copositive is that vQv > 0
holds forallv € A,,,, where A,, is the standard simplex. By using this condition
one can reformulate copositive programming as semi-infinite programming.
We have used this reformulation to analyse copositive programming from the
viewpoint of SIP.

A discritization of the simplex defines a simplicial partition. By using such
partitions an approximation method for copositive programming is presented.
This approximation method can be seen as a special case of a discritization
method for semi-infinite programming. We have analysed the behaviour of the
approximation error in dependence of the discretization meshsize d. We have
shown that the error for the optimal values of the schemes in [38] behave like
O(d?) for d — 0. Another scheme (P;) shows a convergence rate O(d). The
concept of order of maximizers allows to analyse the behaviour of the error for
the maximizers in the approximation schemes. It also has been shown that
maximizer of arbitrary large order may appear in copositive programming.
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Acronyms

Cop Copositive Programming, page 10

ESS Evolutionarily Stable Strategy, page 55

LP Linear Programming, page 7

LSIP Linear Semi-infinite Program, page 11

SDP Semidefinite Programming, page 8

StQP Standard Quadratic Programming, page 40

Cone

C, the completely positive cone, page 5

Cm the copositive cone, page 4

Cm(K) the cone of set-semidefinite matrices, page 20

Ch(K) the dual of the cone of set-semidefinite matrices, page 20
No the cone of m x m symmetric, nonnegative matrices, page 6

cone(V) the convex cone generated by V' C R™, page 11

the positive semidefinite cone, page 4

m
St the positive definite cone, page 4
Sm the cone of symmetric m x m matrices, page 4
Ext(K) the set of elements of K which generate extreme rays., page 28

DNN,, the set of doubly nonnegative matrices, DN N,,, := S, N N,,, page 31
Matrix
for the matrix A, a; will denote the i*" column of A4, page 26

adj(A) the adjoint of the matrix A, page 26
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det(A) the determinant of the matrix A, page 25

Diag(u) is the matrix with u on the main diagonal while all other elements are zero,
page 22

diag(A) is the vector of the diagonal elements of the matrix A, page 22

ker(A) the kernel or null space of the matrix, i.e., ker(A4) := {v: Av = o}, page 48

[|All the Frobenius norm, i.e., ||A|| := /tr(AAT), page 51

tr(A) for A € R™*™ tr(A) :=>"" a;;, page 4

AT for A € R™*", AT is the transpose of A, page 4

AL the inverse of the matrix A, page 26

Av the matrix obtained from A after deleting the i*” row of A and the ;"
column of A, page 25

aij for A € R™*", q;; is the element in i*" row and j* column, page 4

E usually the m-dimensional matrix of all ones, page 24

1 usually the m-dimensional identity matrix, page 24

0] the matrix of all zeros, the order of O will be clear from the context, page 28

Qg the principal submatrix obtained after deleting the rows and the columns
of the matrix ) not corresponding to the elements of the index set J C U/
ie (Qr)ij = qi;foralli € J,j € J, page 26

rank(A) rank of the matrix A, page 32

Mathematical Programming

Conep)
Conep

)
COPp)
COPp)

(
(
(
(
(SIPp)
(SIPp)
F(P)
val(P)

S(P)

the dual cone program, page 5

Primal cone program, page 5

the dual copositive program, page 10

the primal copositive program, page 10

the Haar dual of the linear semi-infinite program (SIPp), page 11
the linear semi-infinite program, page 11

set of feasible points of the program (P), page 6

value of the program (P), page 6

the set of maximizers of the program (P), page 12

Miscellaneous
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R
RY,
RMX7
rint(S)
aff(.S)

Vector

\ 2

[l

€;

standard inner product, i.e., (U, V) = tr(UTV) for U,V € R™*", page 4

the e-neighbourhood of v € R™, i.e, N.(V) :={ve R™ : ||v-V|| < ¢}, for
e > 0, page 42

the convex hull of the set S, page 4

U:={1,2,--- ,m}, page 24

interior of the set S, page 7

the largest integer less then or equal to a, page 65
the real space, page 3

the m-dimensional real space, page 3

the nonnegative orthant, page 3

R, :={becR™:b;>0,Vi=1,...,m}, page 34
the space of m x n real matrices, page 3

the relative interior of the set .S, page 45

the affine hull of the set .S, page 45

the vector of all ones, usually e € R™, otherwise the dimension of e is clear
from the context, page 24

the vector of all-zeros, the dimension of o will be clear from the context,
page 4

the sub vector corresponding to the elements of the index set J, i.e, (v;); =
v; for all 4 € J, page 28

the Euclidean norm of the vector u € R™ i.e. ||u|| := \/>_." u?, page 42

the unit vectors of either length m, or the length is clear from the context,
page 24

support of the vector v € R™, page 41
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Index

active index set, E fixed point, E

adjoint of the matrix, @

affine hull, @ Jensen inequality, @

affine subspace, @

matrix

clique, @ comparison matrix, E
maximal clique, @ M-matrix, E

cofactor of the matrix, E completely positive matrix, E

completely positive cone, copositive matrix,
interior, @ diagonally dominant matrix, @
extreme rays, B7 doubly nonnegative matrix, B1

cone, i Frobenius norm,
set-semidefinite cone, E positive semidefnite matrix, @
completely positive cone, B, strictly copositive matrix, 29
copositive cone, {,
dual cone, @ replicator dynamics, @

extreme ray,

pointed cone, @

positive semidefinite cone, @
cone programming,

copositive programming, @

Slater condition, [ discretization methods, L3

strong duality, 4 KKT conditions, [[3

weak duality, B level set, 17
cone programming relaxation, L4 optimality condition, i3
convex hull, B Slater condition,

convex set, B strong duality, 12
Slater condition

relative interior, 43 cone programming, [
copositive cone, semi-infinite programming, @

extreme rays, Sperner's Lemma,
standard quadratic programming, E

Schur complement, E

selection equations,

semi-infinite programming, @
active index set,

face, E

interior,
copositive programming, [L( KKT conditions,
CP-rank, @ linear independence  constraints
qualification, @
diagonally dominant, B5 order of maximizer,
strict complimentarity, @
evolutionarily stable strategy, @ strong second order condition, E
pattern of ESS, @ support of the vector, @

feasible direction, @1
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